Properties

Label 2-35e2-1.1-c1-0-2
Degree $2$
Conductor $1225$
Sign $1$
Analytic cond. $9.78167$
Root an. cond. $3.12756$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2.82·3-s − 4-s − 2.82·6-s − 3·8-s + 5.00·9-s + 2.82·12-s − 4.24·13-s − 16-s − 4.24·17-s + 5.00·18-s − 2.82·19-s + 4·23-s + 8.48·24-s − 4.24·26-s − 5.65·27-s + 5.65·31-s + 5·32-s − 4.24·34-s − 5.00·36-s + 6·37-s − 2.82·38-s + 12·39-s + 4.24·41-s + 4·46-s + 2.82·48-s + 12·51-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.63·3-s − 0.5·4-s − 1.15·6-s − 1.06·8-s + 1.66·9-s + 0.816·12-s − 1.17·13-s − 0.250·16-s − 1.02·17-s + 1.17·18-s − 0.648·19-s + 0.834·23-s + 1.73·24-s − 0.832·26-s − 1.08·27-s + 1.01·31-s + 0.883·32-s − 0.727·34-s − 0.833·36-s + 0.986·37-s − 0.458·38-s + 1.92·39-s + 0.662·41-s + 0.589·46-s + 0.408·48-s + 1.68·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1225\)    =    \(5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(9.78167\)
Root analytic conductor: \(3.12756\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7308832652\)
\(L(\frac12)\) \(\approx\) \(0.7308832652\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2 \( 1 - T + 2T^{2} \)
3 \( 1 + 2.82T + 3T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 + 4.24T + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 5.65T + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 - 4.24T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 8T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 - 9.89T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 - 12.7T + 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 - 8.48T + 83T^{2} \)
89 \( 1 + 4.24T + 89T^{2} \)
97 \( 1 - 4.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.837994967643485875386341524897, −9.120243484267251409314341815232, −7.969689087758694515812449954851, −6.75816224192841022856651307800, −6.30078858233938875674405760206, −5.26845740515687726986433825681, −4.79446893628447739625188208906, −4.06548061239794633931168717861, −2.53909939841841286474128470107, −0.60370243124921022818705555720, 0.60370243124921022818705555720, 2.53909939841841286474128470107, 4.06548061239794633931168717861, 4.79446893628447739625188208906, 5.26845740515687726986433825681, 6.30078858233938875674405760206, 6.75816224192841022856651307800, 7.969689087758694515812449954851, 9.120243484267251409314341815232, 9.837994967643485875386341524897

Graph of the $Z$-function along the critical line