Properties

Label 2-360-1.1-c1-0-0
Degree $2$
Conductor $360$
Sign $1$
Analytic cond. $2.87461$
Root an. cond. $1.69546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·11-s + 6·13-s + 6·17-s − 4·19-s + 25-s + 2·29-s − 8·31-s − 2·37-s + 6·41-s + 12·43-s − 8·47-s − 7·49-s − 6·53-s − 4·55-s − 12·59-s + 14·61-s − 6·65-s + 4·67-s − 8·71-s − 6·73-s − 8·79-s + 12·83-s − 6·85-s − 10·89-s + 4·95-s + 2·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.20·11-s + 1.66·13-s + 1.45·17-s − 0.917·19-s + 1/5·25-s + 0.371·29-s − 1.43·31-s − 0.328·37-s + 0.937·41-s + 1.82·43-s − 1.16·47-s − 49-s − 0.824·53-s − 0.539·55-s − 1.56·59-s + 1.79·61-s − 0.744·65-s + 0.488·67-s − 0.949·71-s − 0.702·73-s − 0.900·79-s + 1.31·83-s − 0.650·85-s − 1.05·89-s + 0.410·95-s + 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360\)    =    \(2^{3} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(2.87461\)
Root analytic conductor: \(1.69546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.393082687\)
\(L(\frac12)\) \(\approx\) \(1.393082687\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.35483361723706372877757083384, −10.73084990800958988992236291099, −9.487642964123562756489741043280, −8.663099716937980035576099714984, −7.76560916456884806442341251241, −6.58285993178476791834968599347, −5.74168392413099570963868387782, −4.19803603229033482796144552370, −3.38984665882479408513314051846, −1.36054514292875137606341288502, 1.36054514292875137606341288502, 3.38984665882479408513314051846, 4.19803603229033482796144552370, 5.74168392413099570963868387782, 6.58285993178476791834968599347, 7.76560916456884806442341251241, 8.663099716937980035576099714984, 9.487642964123562756489741043280, 10.73084990800958988992236291099, 11.35483361723706372877757083384

Graph of the $Z$-function along the critical line