L(s) = 1 | − 5-s + 4·11-s + 6·13-s + 6·17-s − 4·19-s + 25-s + 2·29-s − 8·31-s − 2·37-s + 6·41-s + 12·43-s − 8·47-s − 7·49-s − 6·53-s − 4·55-s − 12·59-s + 14·61-s − 6·65-s + 4·67-s − 8·71-s − 6·73-s − 8·79-s + 12·83-s − 6·85-s − 10·89-s + 4·95-s + 2·97-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.20·11-s + 1.66·13-s + 1.45·17-s − 0.917·19-s + 1/5·25-s + 0.371·29-s − 1.43·31-s − 0.328·37-s + 0.937·41-s + 1.82·43-s − 1.16·47-s − 49-s − 0.824·53-s − 0.539·55-s − 1.56·59-s + 1.79·61-s − 0.744·65-s + 0.488·67-s − 0.949·71-s − 0.702·73-s − 0.900·79-s + 1.31·83-s − 0.650·85-s − 1.05·89-s + 0.410·95-s + 0.203·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.393082687\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.393082687\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 6 T + p T^{2} \) |
| 43 | \( 1 - 12 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 12 T + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 + 6 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 + 10 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.35483361723706372877757083384, −10.73084990800958988992236291099, −9.487642964123562756489741043280, −8.663099716937980035576099714984, −7.76560916456884806442341251241, −6.58285993178476791834968599347, −5.74168392413099570963868387782, −4.19803603229033482796144552370, −3.38984665882479408513314051846, −1.36054514292875137606341288502,
1.36054514292875137606341288502, 3.38984665882479408513314051846, 4.19803603229033482796144552370, 5.74168392413099570963868387782, 6.58285993178476791834968599347, 7.76560916456884806442341251241, 8.663099716937980035576099714984, 9.487642964123562756489741043280, 10.73084990800958988992236291099, 11.35483361723706372877757083384