L(s) = 1 | + (−0.760 + 1.19i)2-s + (−0.844 − 1.81i)4-s + (−2.23 + 0.0113i)5-s + (0.471 − 0.471i)7-s + (2.80 + 0.372i)8-s + (1.68 − 2.67i)10-s + 0.335·11-s + (3.50 − 3.50i)13-s + (0.203 + 0.921i)14-s + (−2.57 + 3.06i)16-s + (2.53 + 2.53i)17-s + 4.07·19-s + (1.90 + 4.04i)20-s + (−0.255 + 0.400i)22-s + (6.20 − 6.20i)23-s + ⋯ |
L(s) = 1 | + (−0.537 + 0.843i)2-s + (−0.422 − 0.906i)4-s + (−0.999 + 0.00506i)5-s + (0.178 − 0.178i)7-s + (0.991 + 0.131i)8-s + (0.533 − 0.845i)10-s + 0.101·11-s + (0.971 − 0.971i)13-s + (0.0545 + 0.246i)14-s + (−0.643 + 0.765i)16-s + (0.614 + 0.614i)17-s + 0.934·19-s + (0.426 + 0.904i)20-s + (−0.0544 + 0.0853i)22-s + (1.29 − 1.29i)23-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.962−0.271i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(0.962−0.271i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.962−0.271i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), 0.962−0.271i)
|
Particular Values
L(1) |
≈ |
0.877354+0.121350i |
L(21) |
≈ |
0.877354+0.121350i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.760−1.19i)T |
| 3 | 1 |
| 5 | 1+(2.23−0.0113i)T |
good | 7 | 1+(−0.471+0.471i)T−7iT2 |
| 11 | 1−0.335T+11T2 |
| 13 | 1+(−3.50+3.50i)T−13iT2 |
| 17 | 1+(−2.53−2.53i)T+17iT2 |
| 19 | 1−4.07T+19T2 |
| 23 | 1+(−6.20+6.20i)T−23iT2 |
| 29 | 1+2.42iT−29T2 |
| 31 | 1+6.41T+31T2 |
| 37 | 1+(−2.24−2.24i)T+37iT2 |
| 41 | 1−5.80iT−41T2 |
| 43 | 1+(−4.87+4.87i)T−43iT2 |
| 47 | 1+(1.68+1.68i)T+47iT2 |
| 53 | 1+(3.05+3.05i)T+53iT2 |
| 59 | 1+12.2iT−59T2 |
| 61 | 1−7.49iT−61T2 |
| 67 | 1+(5.55+5.55i)T+67iT2 |
| 71 | 1+13.4iT−71T2 |
| 73 | 1+(−5.05−5.05i)T+73iT2 |
| 79 | 1−8.85iT−79T2 |
| 83 | 1+(−4.78−4.78i)T+83iT2 |
| 89 | 1+8.33T+89T2 |
| 97 | 1+(−10.1+10.1i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.10633810362802043859860649921, −10.66224784085880569939094641371, −9.439541861096698881695914750872, −8.396428030334200418574711202658, −7.85801552729013008169216947161, −6.90436998827225347246726111874, −5.78512490731491976090010770354, −4.67886228786382255856291890035, −3.40842976719496254791259290379, −0.936352854525418942323758779444,
1.27460084179640595879080310695, 3.12244489536911086679350650459, 3.99527879228947865417886421014, 5.26126941834362419345319144295, 7.08620829015100287196295018650, 7.71724160075939784583180983104, 8.903150608598766025290968668591, 9.366760577988439595400116824767, 10.76229608949856568242952485123, 11.42622275330600485062546946768