L(s) = 1 | + (−0.473 + 1.33i)2-s + (−1.55 − 1.26i)4-s + (1.45 + 1.69i)5-s + (1.53 − 1.53i)7-s + (2.41 − 1.47i)8-s + (−2.95 + 1.13i)10-s + 2.72·11-s + (0.857 − 0.857i)13-s + (1.31 + 2.76i)14-s + (0.818 + 3.91i)16-s + (2.55 + 2.55i)17-s − 3.54·19-s + (−0.113 − 4.47i)20-s + (−1.28 + 3.63i)22-s + (−0.626 + 0.626i)23-s + ⋯ |
L(s) = 1 | + (−0.334 + 0.942i)2-s + (−0.776 − 0.630i)4-s + (0.650 + 0.759i)5-s + (0.578 − 0.578i)7-s + (0.853 − 0.520i)8-s + (−0.933 + 0.358i)10-s + 0.821·11-s + (0.237 − 0.237i)13-s + (0.351 + 0.738i)14-s + (0.204 + 0.978i)16-s + (0.619 + 0.619i)17-s − 0.812·19-s + (−0.0254 − 0.999i)20-s + (−0.274 + 0.774i)22-s + (−0.130 + 0.130i)23-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.251−0.967i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(0.251−0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.251−0.967i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), 0.251−0.967i)
|
Particular Values
L(1) |
≈ |
1.02457+0.792700i |
L(21) |
≈ |
1.02457+0.792700i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.473−1.33i)T |
| 3 | 1 |
| 5 | 1+(−1.45−1.69i)T |
good | 7 | 1+(−1.53+1.53i)T−7iT2 |
| 11 | 1−2.72T+11T2 |
| 13 | 1+(−0.857+0.857i)T−13iT2 |
| 17 | 1+(−2.55−2.55i)T+17iT2 |
| 19 | 1+3.54T+19T2 |
| 23 | 1+(0.626−0.626i)T−23iT2 |
| 29 | 1−5.12iT−29T2 |
| 31 | 1−7.89T+31T2 |
| 37 | 1+(4.21+4.21i)T+37iT2 |
| 41 | 1−12.4iT−41T2 |
| 43 | 1+(−5.67+5.67i)T−43iT2 |
| 47 | 1+(9.45+9.45i)T+47iT2 |
| 53 | 1+(6.46+6.46i)T+53iT2 |
| 59 | 1+2.51iT−59T2 |
| 61 | 1+9.49iT−61T2 |
| 67 | 1+(−9.91−9.91i)T+67iT2 |
| 71 | 1−2.19iT−71T2 |
| 73 | 1+(5.71+5.71i)T+73iT2 |
| 79 | 1+12.7iT−79T2 |
| 83 | 1+(3.58+3.58i)T+83iT2 |
| 89 | 1−10.2T+89T2 |
| 97 | 1+(1.29−1.29i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.34007864886512833715379418446, −10.46118404073064157889278062136, −9.830492173143899820861584712913, −8.699681524118870143119804935410, −7.82985019775255639138346080098, −6.76969275564290286518626552317, −6.14150629474063518942628290237, −4.92999810818858339485702278479, −3.65340844576073601755125590738, −1.54072316143711982322900013436,
1.28270719605535487965185863854, 2.49959852062694329510674496872, 4.15148735461421931864076358009, 5.07809591274727682486585633844, 6.29976758612026043986589884068, 7.933277793186658596398595302111, 8.722423709933537238997330812200, 9.415395914773666729719334960886, 10.24560549379053070702314506218, 11.39607754721079929269210229242