L(s) = 1 | + (0.927 + 1.06i)2-s + (−0.280 + 1.98i)4-s + (2.18 + 0.468i)5-s + 3.02·7-s + (−2.37 + 1.53i)8-s + (1.52 + 2.76i)10-s − 3.62i·11-s − 1.69·13-s + (2.80 + 3.22i)14-s + (−3.84 − 1.11i)16-s − 6.60·17-s + 5.12·19-s + (−1.54 + 4.19i)20-s + (3.86 − 3.35i)22-s + 6.67i·23-s + ⋯ |
L(s) = 1 | + (0.655 + 0.755i)2-s + (−0.140 + 0.990i)4-s + (0.977 + 0.209i)5-s + 1.14·7-s + (−0.839 + 0.543i)8-s + (0.482 + 0.875i)10-s − 1.09i·11-s − 0.470·13-s + (0.748 + 0.862i)14-s + (−0.960 − 0.277i)16-s − 1.60·17-s + 1.17·19-s + (−0.344 + 0.938i)20-s + (0.824 − 0.716i)22-s + 1.39i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.249 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.73670 + 1.34575i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.73670 + 1.34575i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.927 - 1.06i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.18 - 0.468i)T \) |
good | 7 | \( 1 - 3.02T + 7T^{2} \) |
| 11 | \( 1 + 3.62iT - 11T^{2} \) |
| 13 | \( 1 + 1.69T + 13T^{2} \) |
| 17 | \( 1 + 6.60T + 17T^{2} \) |
| 19 | \( 1 - 5.12T + 19T^{2} \) |
| 23 | \( 1 - 6.67iT - 23T^{2} \) |
| 29 | \( 1 + 6.82T + 29T^{2} \) |
| 31 | \( 1 + 1.73iT - 31T^{2} \) |
| 37 | \( 1 + 0.371T + 37T^{2} \) |
| 41 | \( 1 + 5.83iT - 41T^{2} \) |
| 43 | \( 1 + 5.24iT - 43T^{2} \) |
| 47 | \( 1 - 0.525iT - 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 + 4.86iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 13.4iT - 67T^{2} \) |
| 71 | \( 1 - 2.45T + 71T^{2} \) |
| 73 | \( 1 - 14.5iT - 73T^{2} \) |
| 79 | \( 1 - 14.1iT - 79T^{2} \) |
| 83 | \( 1 - 5.79T + 83T^{2} \) |
| 89 | \( 1 - 10.2iT - 89T^{2} \) |
| 97 | \( 1 + 9.33iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46876624449463907848715103510, −11.11584101070880319080755532665, −9.549116718444608133342572657960, −8.738411610346438107959119657053, −7.71648949845135433309287528638, −6.78517604147374584039744828199, −5.61364050124735744638003224449, −5.08301756843702046475124345359, −3.61607289766875547149178244059, −2.13624341081602281442419021355,
1.62515988277951906713058806243, 2.54894514897133194855472053044, 4.50486785359579443612138864569, 4.95212896810919405113163276411, 6.16310825960318586195727224147, 7.30711110780857846551093464107, 8.810712012441947776661365029202, 9.582949529990553051025455515481, 10.47513516405170671963685981375, 11.28018768877054263606671756809