L(s) = 1 | + (0.927 + 1.06i)2-s + (−0.280 + 1.98i)4-s + (2.18 + 0.468i)5-s + 3.02·7-s + (−2.37 + 1.53i)8-s + (1.52 + 2.76i)10-s − 3.62i·11-s − 1.69·13-s + (2.80 + 3.22i)14-s + (−3.84 − 1.11i)16-s − 6.60·17-s + 5.12·19-s + (−1.54 + 4.19i)20-s + (3.86 − 3.35i)22-s + 6.67i·23-s + ⋯ |
L(s) = 1 | + (0.655 + 0.755i)2-s + (−0.140 + 0.990i)4-s + (0.977 + 0.209i)5-s + 1.14·7-s + (−0.839 + 0.543i)8-s + (0.482 + 0.875i)10-s − 1.09i·11-s − 0.470·13-s + (0.748 + 0.862i)14-s + (−0.960 − 0.277i)16-s − 1.60·17-s + 1.17·19-s + (−0.344 + 0.938i)20-s + (0.824 − 0.716i)22-s + 1.39i·23-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(0.249−0.968i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(0.249−0.968i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
0.249−0.968i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(179,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), 0.249−0.968i)
|
Particular Values
L(1) |
≈ |
1.73670+1.34575i |
L(21) |
≈ |
1.73670+1.34575i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.927−1.06i)T |
| 3 | 1 |
| 5 | 1+(−2.18−0.468i)T |
good | 7 | 1−3.02T+7T2 |
| 11 | 1+3.62iT−11T2 |
| 13 | 1+1.69T+13T2 |
| 17 | 1+6.60T+17T2 |
| 19 | 1−5.12T+19T2 |
| 23 | 1−6.67iT−23T2 |
| 29 | 1+6.82T+29T2 |
| 31 | 1+1.73iT−31T2 |
| 37 | 1+0.371T+37T2 |
| 41 | 1+5.83iT−41T2 |
| 43 | 1+5.24iT−43T2 |
| 47 | 1−0.525iT−47T2 |
| 53 | 1+10.0iT−53T2 |
| 59 | 1+4.86iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1+13.4iT−67T2 |
| 71 | 1−2.45T+71T2 |
| 73 | 1−14.5iT−73T2 |
| 79 | 1−14.1iT−79T2 |
| 83 | 1−5.79T+83T2 |
| 89 | 1−10.2iT−89T2 |
| 97 | 1+9.33iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46876624449463907848715103510, −11.11584101070880319080755532665, −9.549116718444608133342572657960, −8.738411610346438107959119657053, −7.71648949845135433309287528638, −6.78517604147374584039744828199, −5.61364050124735744638003224449, −5.08301756843702046475124345359, −3.61607289766875547149178244059, −2.13624341081602281442419021355,
1.62515988277951906713058806243, 2.54894514897133194855472053044, 4.50486785359579443612138864569, 4.95212896810919405113163276411, 6.16310825960318586195727224147, 7.30711110780857846551093464107, 8.810712012441947776661365029202, 9.582949529990553051025455515481, 10.47513516405170671963685981375, 11.28018768877054263606671756809