L(s) = 1 | + (0.927 + 1.06i)2-s + (−0.280 + 1.98i)4-s + (−2.18 + 0.468i)5-s − 3.02·7-s + (−2.37 + 1.53i)8-s + (−2.52 − 1.90i)10-s + 3.62i·11-s + 1.69·13-s + (−2.80 − 3.22i)14-s + (−3.84 − 1.11i)16-s − 6.60·17-s + 5.12·19-s + (−0.313 − 4.46i)20-s + (−3.86 + 3.35i)22-s + 6.67i·23-s + ⋯ |
L(s) = 1 | + (0.655 + 0.755i)2-s + (−0.140 + 0.990i)4-s + (−0.977 + 0.209i)5-s − 1.14·7-s + (−0.839 + 0.543i)8-s + (−0.799 − 0.601i)10-s + 1.09i·11-s + 0.470·13-s + (−0.748 − 0.862i)14-s + (−0.960 − 0.277i)16-s − 1.60·17-s + 1.17·19-s + (−0.0700 − 0.997i)20-s + (−0.824 + 0.716i)22-s + 1.39i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 - 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.985 - 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0853911 + 1.00072i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0853911 + 1.00072i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.927 - 1.06i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.18 - 0.468i)T \) |
good | 7 | \( 1 + 3.02T + 7T^{2} \) |
| 11 | \( 1 - 3.62iT - 11T^{2} \) |
| 13 | \( 1 - 1.69T + 13T^{2} \) |
| 17 | \( 1 + 6.60T + 17T^{2} \) |
| 19 | \( 1 - 5.12T + 19T^{2} \) |
| 23 | \( 1 - 6.67iT - 23T^{2} \) |
| 29 | \( 1 - 6.82T + 29T^{2} \) |
| 31 | \( 1 + 1.73iT - 31T^{2} \) |
| 37 | \( 1 - 0.371T + 37T^{2} \) |
| 41 | \( 1 - 5.83iT - 41T^{2} \) |
| 43 | \( 1 - 5.24iT - 43T^{2} \) |
| 47 | \( 1 - 0.525iT - 47T^{2} \) |
| 53 | \( 1 + 10.0iT - 53T^{2} \) |
| 59 | \( 1 - 4.86iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 13.4iT - 67T^{2} \) |
| 71 | \( 1 + 2.45T + 71T^{2} \) |
| 73 | \( 1 + 14.5iT - 73T^{2} \) |
| 79 | \( 1 - 14.1iT - 79T^{2} \) |
| 83 | \( 1 - 5.79T + 83T^{2} \) |
| 89 | \( 1 + 10.2iT - 89T^{2} \) |
| 97 | \( 1 - 9.33iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.95123385248277604810381061731, −11.32934770240250202356394046727, −9.884250526577154754359127636971, −8.961756199444896999410084728377, −7.83523755901233362957652779477, −7.00756308083384635707393211822, −6.33318686540806826871362783010, −4.89411837356652522219958835511, −3.91398066314068413538903690294, −2.90807940082637226483979586365,
0.54853001880196575795502505780, 2.83561634224986253914388939971, 3.69866118062682136003653068504, 4.75479284056672982503204191589, 6.10426730268104657162441786048, 6.89193276134901938742028675849, 8.514045595792838479555274513275, 9.160489863808419395876491007815, 10.44131988543961343324070672308, 11.08510357753680986108080781598