L(s) = 1 | + (0.927 + 1.06i)2-s + (−0.280 + 1.98i)4-s + (−2.18 + 0.468i)5-s − 3.02·7-s + (−2.37 + 1.53i)8-s + (−2.52 − 1.90i)10-s + 3.62i·11-s + 1.69·13-s + (−2.80 − 3.22i)14-s + (−3.84 − 1.11i)16-s − 6.60·17-s + 5.12·19-s + (−0.313 − 4.46i)20-s + (−3.86 + 3.35i)22-s + 6.67i·23-s + ⋯ |
L(s) = 1 | + (0.655 + 0.755i)2-s + (−0.140 + 0.990i)4-s + (−0.977 + 0.209i)5-s − 1.14·7-s + (−0.839 + 0.543i)8-s + (−0.799 − 0.601i)10-s + 1.09i·11-s + 0.470·13-s + (−0.748 − 0.862i)14-s + (−0.960 − 0.277i)16-s − 1.60·17-s + 1.17·19-s + (−0.0700 − 0.997i)20-s + (−0.824 + 0.716i)22-s + 1.39i·23-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(−0.985−0.169i)Λ(2−s)
Λ(s)=(=(360s/2ΓC(s+1/2)L(s)(−0.985−0.169i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
−0.985−0.169i
|
Analytic conductor: |
2.87461 |
Root analytic conductor: |
1.69546 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(179,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :1/2), −0.985−0.169i)
|
Particular Values
L(1) |
≈ |
0.0853911+1.00072i |
L(21) |
≈ |
0.0853911+1.00072i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.927−1.06i)T |
| 3 | 1 |
| 5 | 1+(2.18−0.468i)T |
good | 7 | 1+3.02T+7T2 |
| 11 | 1−3.62iT−11T2 |
| 13 | 1−1.69T+13T2 |
| 17 | 1+6.60T+17T2 |
| 19 | 1−5.12T+19T2 |
| 23 | 1−6.67iT−23T2 |
| 29 | 1−6.82T+29T2 |
| 31 | 1+1.73iT−31T2 |
| 37 | 1−0.371T+37T2 |
| 41 | 1−5.83iT−41T2 |
| 43 | 1−5.24iT−43T2 |
| 47 | 1−0.525iT−47T2 |
| 53 | 1+10.0iT−53T2 |
| 59 | 1−4.86iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−13.4iT−67T2 |
| 71 | 1+2.45T+71T2 |
| 73 | 1+14.5iT−73T2 |
| 79 | 1−14.1iT−79T2 |
| 83 | 1−5.79T+83T2 |
| 89 | 1+10.2iT−89T2 |
| 97 | 1−9.33iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95123385248277604810381061731, −11.32934770240250202356394046727, −9.884250526577154754359127636971, −8.961756199444896999410084728377, −7.83523755901233362957652779477, −7.00756308083384635707393211822, −6.33318686540806826871362783010, −4.89411837356652522219958835511, −3.91398066314068413538903690294, −2.90807940082637226483979586365,
0.54853001880196575795502505780, 2.83561634224986253914388939971, 3.69866118062682136003653068504, 4.75479284056672982503204191589, 6.10426730268104657162441786048, 6.89193276134901938742028675849, 8.514045595792838479555274513275, 9.160489863808419395876491007815, 10.44131988543961343324070672308, 11.08510357753680986108080781598