L(s) = 1 | + (4.78 + 3.01i)2-s + (13.7 + 28.8i)4-s − 25i·5-s − 56.4·7-s + (−21.0 + 179. i)8-s + (75.4 − 119. i)10-s + 261. i·11-s + 720. i·13-s + (−270. − 170. i)14-s + (−643. + 796. i)16-s + 1.87e3·17-s − 1.99e3i·19-s + (721. − 344. i)20-s + (−787. + 1.24e3i)22-s − 2.57e3·23-s + ⋯ |
L(s) = 1 | + (0.845 + 0.533i)2-s + (0.431 + 0.902i)4-s − 0.447i·5-s − 0.435·7-s + (−0.116 + 0.993i)8-s + (0.238 − 0.378i)10-s + 0.650i·11-s + 1.18i·13-s + (−0.368 − 0.232i)14-s + (−0.628 + 0.778i)16-s + 1.57·17-s − 1.26i·19-s + (0.403 − 0.192i)20-s + (−0.346 + 0.550i)22-s − 1.01·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.893789390\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.893789390\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4.78 - 3.01i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + 25iT \) |
good | 7 | \( 1 + 56.4T + 1.68e4T^{2} \) |
| 11 | \( 1 - 261. iT - 1.61e5T^{2} \) |
| 13 | \( 1 - 720. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 1.87e3T + 1.41e6T^{2} \) |
| 19 | \( 1 + 1.99e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + 2.57e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 1.70e3iT - 2.05e7T^{2} \) |
| 31 | \( 1 + 7.73e3T + 2.86e7T^{2} \) |
| 37 | \( 1 - 1.22e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 1.49e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.81e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 + 2.14e3T + 2.29e8T^{2} \) |
| 53 | \( 1 + 1.60e3iT - 4.18e8T^{2} \) |
| 59 | \( 1 + 2.68e3iT - 7.14e8T^{2} \) |
| 61 | \( 1 - 4.45e4iT - 8.44e8T^{2} \) |
| 67 | \( 1 + 1.24e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 8.18e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + 4.10e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 4.63e4T + 3.07e9T^{2} \) |
| 83 | \( 1 + 6.16e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 5.32e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 3.92e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49278957330199262281645114410, −10.02888605630489800997346391492, −9.147102279131487418021280779502, −8.041244713476131031367194288282, −7.11495678030438707807720204463, −6.24645887524989864403480775960, −5.13219339965880535620367483661, −4.26699966708305401168219599983, −3.12421158080268826447540289508, −1.71334156750915753822295096510,
0.32724985338002001614988813868, 1.77584305025505061400310945511, 3.25650353783891998038891973743, 3.67652534147793455630545132513, 5.49150911436203420454280454933, 5.85121668201411534462030908350, 7.17183890756217614105776189799, 8.195665420382237564243755648096, 9.707208163288533357170667149913, 10.31729815656893805297178151507