L(s) = 1 | + (4.78 + 3.01i)2-s + (13.7 + 28.8i)4-s − 25i·5-s − 56.4·7-s + (−21.0 + 179. i)8-s + (75.4 − 119. i)10-s + 261. i·11-s + 720. i·13-s + (−270. − 170. i)14-s + (−643. + 796. i)16-s + 1.87e3·17-s − 1.99e3i·19-s + (721. − 344. i)20-s + (−787. + 1.24e3i)22-s − 2.57e3·23-s + ⋯ |
L(s) = 1 | + (0.845 + 0.533i)2-s + (0.431 + 0.902i)4-s − 0.447i·5-s − 0.435·7-s + (−0.116 + 0.993i)8-s + (0.238 − 0.378i)10-s + 0.650i·11-s + 1.18i·13-s + (−0.368 − 0.232i)14-s + (−0.628 + 0.778i)16-s + 1.57·17-s − 1.26i·19-s + (0.403 − 0.192i)20-s + (−0.346 + 0.550i)22-s − 1.01·23-s + ⋯ |
Λ(s)=(=(360s/2ΓC(s)L(s)(−0.993−0.116i)Λ(6−s)
Λ(s)=(=(360s/2ΓC(s+5/2)L(s)(−0.993−0.116i)Λ(1−s)
Degree: |
2 |
Conductor: |
360
= 23⋅32⋅5
|
Sign: |
−0.993−0.116i
|
Analytic conductor: |
57.7381 |
Root analytic conductor: |
7.59856 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ360(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 360, ( :5/2), −0.993−0.116i)
|
Particular Values
L(3) |
≈ |
1.893789390 |
L(21) |
≈ |
1.893789390 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4.78−3.01i)T |
| 3 | 1 |
| 5 | 1+25iT |
good | 7 | 1+56.4T+1.68e4T2 |
| 11 | 1−261.iT−1.61e5T2 |
| 13 | 1−720.iT−3.71e5T2 |
| 17 | 1−1.87e3T+1.41e6T2 |
| 19 | 1+1.99e3iT−2.47e6T2 |
| 23 | 1+2.57e3T+6.43e6T2 |
| 29 | 1+1.70e3iT−2.05e7T2 |
| 31 | 1+7.73e3T+2.86e7T2 |
| 37 | 1−1.22e4iT−6.93e7T2 |
| 41 | 1+1.49e4T+1.15e8T2 |
| 43 | 1−1.81e4iT−1.47e8T2 |
| 47 | 1+2.14e3T+2.29e8T2 |
| 53 | 1+1.60e3iT−4.18e8T2 |
| 59 | 1+2.68e3iT−7.14e8T2 |
| 61 | 1−4.45e4iT−8.44e8T2 |
| 67 | 1+1.24e4iT−1.35e9T2 |
| 71 | 1+8.18e3T+1.80e9T2 |
| 73 | 1+4.10e4T+2.07e9T2 |
| 79 | 1−4.63e4T+3.07e9T2 |
| 83 | 1+6.16e4iT−3.93e9T2 |
| 89 | 1+5.32e4T+5.58e9T2 |
| 97 | 1+3.92e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49278957330199262281645114410, −10.02888605630489800997346391492, −9.147102279131487418021280779502, −8.041244713476131031367194288282, −7.11495678030438707807720204463, −6.24645887524989864403480775960, −5.13219339965880535620367483661, −4.26699966708305401168219599983, −3.12421158080268826447540289508, −1.71334156750915753822295096510,
0.32724985338002001614988813868, 1.77584305025505061400310945511, 3.25650353783891998038891973743, 3.67652534147793455630545132513, 5.49150911436203420454280454933, 5.85121668201411534462030908350, 7.17183890756217614105776189799, 8.195665420382237564243755648096, 9.707208163288533357170667149913, 10.31729815656893805297178151507