Properties

Label 2-363-1.1-c1-0-4
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $2.89856$
Root an. cond. $1.70251$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.381·2-s − 3-s − 1.85·4-s + 1.61·5-s − 0.381·6-s + 7-s − 1.47·8-s + 9-s + 0.618·10-s + 1.85·12-s + 4.23·13-s + 0.381·14-s − 1.61·15-s + 3.14·16-s + 7.85·17-s + 0.381·18-s + 0.854·19-s − 3·20-s − 21-s − 4.23·23-s + 1.47·24-s − 2.38·25-s + 1.61·26-s − 27-s − 1.85·28-s + 6·29-s − 0.618·30-s + ⋯
L(s)  = 1  + 0.270·2-s − 0.577·3-s − 0.927·4-s + 0.723·5-s − 0.155·6-s + 0.377·7-s − 0.520·8-s + 0.333·9-s + 0.195·10-s + 0.535·12-s + 1.17·13-s + 0.102·14-s − 0.417·15-s + 0.786·16-s + 1.90·17-s + 0.0900·18-s + 0.195·19-s − 0.670·20-s − 0.218·21-s − 0.883·23-s + 0.300·24-s − 0.476·25-s + 0.317·26-s − 0.192·27-s − 0.350·28-s + 1.11·29-s − 0.112·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(2.89856\)
Root analytic conductor: \(1.70251\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.283749078\)
\(L(\frac12)\) \(\approx\) \(1.283749078\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 \)
good2 \( 1 - 0.381T + 2T^{2} \)
5 \( 1 - 1.61T + 5T^{2} \)
7 \( 1 - T + 7T^{2} \)
13 \( 1 - 4.23T + 13T^{2} \)
17 \( 1 - 7.85T + 17T^{2} \)
19 \( 1 - 0.854T + 19T^{2} \)
23 \( 1 + 4.23T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 5.09T + 31T^{2} \)
37 \( 1 + 1.76T + 37T^{2} \)
41 \( 1 - 4.23T + 41T^{2} \)
43 \( 1 + 6.70T + 43T^{2} \)
47 \( 1 - 1.09T + 47T^{2} \)
53 \( 1 + 2.61T + 53T^{2} \)
59 \( 1 - 9.61T + 59T^{2} \)
61 \( 1 + 8.56T + 61T^{2} \)
67 \( 1 + 4.85T + 67T^{2} \)
71 \( 1 + 5.32T + 71T^{2} \)
73 \( 1 + 7.70T + 73T^{2} \)
79 \( 1 + 11T + 79T^{2} \)
83 \( 1 - 7.47T + 83T^{2} \)
89 \( 1 + 3.76T + 89T^{2} \)
97 \( 1 - 1.14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.61215141032998682664216013847, −10.25337631368427615182969572735, −9.861919358650799954355187995432, −8.641764915832080958808547938776, −7.80965097349434811601625074813, −6.18219234634381625701084691188, −5.63369731786823936784536233854, −4.59053258519555098502675020313, −3.37718679860900972842092947176, −1.26179673917819932488302670889, 1.26179673917819932488302670889, 3.37718679860900972842092947176, 4.59053258519555098502675020313, 5.63369731786823936784536233854, 6.18219234634381625701084691188, 7.80965097349434811601625074813, 8.641764915832080958808547938776, 9.861919358650799954355187995432, 10.25337631368427615182969572735, 11.61215141032998682664216013847

Graph of the $Z$-function along the critical line