Properties

Label 2-363-1.1-c3-0-35
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $21.4176$
Root an. cond. $4.62792$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s − 7·4-s − 4·5-s − 3·6-s + 26·7-s − 15·8-s + 9·9-s − 4·10-s + 21·12-s + 32·13-s + 26·14-s + 12·15-s + 41·16-s − 74·17-s + 9·18-s + 60·19-s + 28·20-s − 78·21-s − 182·23-s + 45·24-s − 109·25-s + 32·26-s − 27·27-s − 182·28-s + 90·29-s + 12·30-s + ⋯
L(s)  = 1  + 0.353·2-s − 0.577·3-s − 7/8·4-s − 0.357·5-s − 0.204·6-s + 1.40·7-s − 0.662·8-s + 1/3·9-s − 0.126·10-s + 0.505·12-s + 0.682·13-s + 0.496·14-s + 0.206·15-s + 0.640·16-s − 1.05·17-s + 0.117·18-s + 0.724·19-s + 0.313·20-s − 0.810·21-s − 1.64·23-s + 0.382·24-s − 0.871·25-s + 0.241·26-s − 0.192·27-s − 1.22·28-s + 0.576·29-s + 0.0730·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(21.4176\)
Root analytic conductor: \(4.62792\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p T \)
11 \( 1 \)
good2 \( 1 - T + p^{3} T^{2} \)
5 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 - 26 T + p^{3} T^{2} \)
13 \( 1 - 32 T + p^{3} T^{2} \)
17 \( 1 + 74 T + p^{3} T^{2} \)
19 \( 1 - 60 T + p^{3} T^{2} \)
23 \( 1 + 182 T + p^{3} T^{2} \)
29 \( 1 - 90 T + p^{3} T^{2} \)
31 \( 1 + 8 T + p^{3} T^{2} \)
37 \( 1 + 66 T + p^{3} T^{2} \)
41 \( 1 + 422 T + p^{3} T^{2} \)
43 \( 1 + 408 T + p^{3} T^{2} \)
47 \( 1 + 506 T + p^{3} T^{2} \)
53 \( 1 - 348 T + p^{3} T^{2} \)
59 \( 1 + 200 T + p^{3} T^{2} \)
61 \( 1 + 132 T + p^{3} T^{2} \)
67 \( 1 + 1036 T + p^{3} T^{2} \)
71 \( 1 - 762 T + p^{3} T^{2} \)
73 \( 1 - 542 T + p^{3} T^{2} \)
79 \( 1 - 550 T + p^{3} T^{2} \)
83 \( 1 - 132 T + p^{3} T^{2} \)
89 \( 1 - 570 T + p^{3} T^{2} \)
97 \( 1 - 14 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68986559669030505440389264907, −9.685135409559019949928867758367, −8.452522330878210111894997890577, −7.970854895944839855249943744404, −6.49448391590043741937216313361, −5.36671480335449753650669227405, −4.61367754936720743312896877246, −3.70160502417944553440467732930, −1.63346534628870380534544130601, 0, 1.63346534628870380534544130601, 3.70160502417944553440467732930, 4.61367754936720743312896877246, 5.36671480335449753650669227405, 6.49448391590043741937216313361, 7.970854895944839855249943744404, 8.452522330878210111894997890577, 9.685135409559019949928867758367, 10.68986559669030505440389264907

Graph of the $Z$-function along the critical line