L(s) = 1 | + 5·2-s + 3·3-s + 17·4-s − 14·5-s + 15·6-s + 32·7-s + 45·8-s + 9·9-s − 70·10-s + 51·12-s + 38·13-s + 160·14-s − 42·15-s + 89·16-s + 2·17-s + 45·18-s − 72·19-s − 238·20-s + 96·21-s + 68·23-s + 135·24-s + 71·25-s + 190·26-s + 27·27-s + 544·28-s + 54·29-s − 210·30-s + ⋯ |
L(s) = 1 | + 1.76·2-s + 0.577·3-s + 17/8·4-s − 1.25·5-s + 1.02·6-s + 1.72·7-s + 1.98·8-s + 1/3·9-s − 2.21·10-s + 1.22·12-s + 0.810·13-s + 3.05·14-s − 0.722·15-s + 1.39·16-s + 0.0285·17-s + 0.589·18-s − 0.869·19-s − 2.66·20-s + 0.997·21-s + 0.616·23-s + 1.14·24-s + 0.567·25-s + 1.43·26-s + 0.192·27-s + 3.67·28-s + 0.345·29-s − 1.27·30-s + ⋯ |
Λ(s)=(=(363s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(363s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
6.452825845 |
L(21) |
≈ |
6.452825845 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−pT |
| 11 | 1 |
good | 2 | 1−5T+p3T2 |
| 5 | 1+14T+p3T2 |
| 7 | 1−32T+p3T2 |
| 13 | 1−38T+p3T2 |
| 17 | 1−2T+p3T2 |
| 19 | 1+72T+p3T2 |
| 23 | 1−68T+p3T2 |
| 29 | 1−54T+p3T2 |
| 31 | 1+152T+p3T2 |
| 37 | 1−174T+p3T2 |
| 41 | 1+94T+p3T2 |
| 43 | 1−528T+p3T2 |
| 47 | 1+340T+p3T2 |
| 53 | 1+438T+p3T2 |
| 59 | 1−20T+p3T2 |
| 61 | 1+570T+p3T2 |
| 67 | 1+460T+p3T2 |
| 71 | 1+1092T+p3T2 |
| 73 | 1+562T+p3T2 |
| 79 | 1−16T+p3T2 |
| 83 | 1+372T+p3T2 |
| 89 | 1+966T+p3T2 |
| 97 | 1+526T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.19006251218915211552277133289, −10.85660797934741720806117522488, −8.772090369735353356673906875150, −7.926372491329169539228361320705, −7.21315452598863345440018093497, −5.86733141680236281432592538378, −4.59284218701746206559809718511, −4.20318469982873972522876409409, −3.05566527665222354951417324263, −1.64665048604234698926158528203,
1.64665048604234698926158528203, 3.05566527665222354951417324263, 4.20318469982873972522876409409, 4.59284218701746206559809718511, 5.86733141680236281432592538378, 7.21315452598863345440018093497, 7.926372491329169539228361320705, 8.772090369735353356673906875150, 10.85660797934741720806117522488, 11.19006251218915211552277133289