Properties

Label 2-363-1.1-c3-0-36
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $21.4176$
Root an. cond. $4.62792$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·2-s + 3·3-s + 17·4-s − 14·5-s + 15·6-s + 32·7-s + 45·8-s + 9·9-s − 70·10-s + 51·12-s + 38·13-s + 160·14-s − 42·15-s + 89·16-s + 2·17-s + 45·18-s − 72·19-s − 238·20-s + 96·21-s + 68·23-s + 135·24-s + 71·25-s + 190·26-s + 27·27-s + 544·28-s + 54·29-s − 210·30-s + ⋯
L(s)  = 1  + 1.76·2-s + 0.577·3-s + 17/8·4-s − 1.25·5-s + 1.02·6-s + 1.72·7-s + 1.98·8-s + 1/3·9-s − 2.21·10-s + 1.22·12-s + 0.810·13-s + 3.05·14-s − 0.722·15-s + 1.39·16-s + 0.0285·17-s + 0.589·18-s − 0.869·19-s − 2.66·20-s + 0.997·21-s + 0.616·23-s + 1.14·24-s + 0.567·25-s + 1.43·26-s + 0.192·27-s + 3.67·28-s + 0.345·29-s − 1.27·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(21.4176\)
Root analytic conductor: \(4.62792\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.452825845\)
\(L(\frac12)\) \(\approx\) \(6.452825845\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
11 \( 1 \)
good2 \( 1 - 5 T + p^{3} T^{2} \)
5 \( 1 + 14 T + p^{3} T^{2} \)
7 \( 1 - 32 T + p^{3} T^{2} \)
13 \( 1 - 38 T + p^{3} T^{2} \)
17 \( 1 - 2 T + p^{3} T^{2} \)
19 \( 1 + 72 T + p^{3} T^{2} \)
23 \( 1 - 68 T + p^{3} T^{2} \)
29 \( 1 - 54 T + p^{3} T^{2} \)
31 \( 1 + 152 T + p^{3} T^{2} \)
37 \( 1 - 174 T + p^{3} T^{2} \)
41 \( 1 + 94 T + p^{3} T^{2} \)
43 \( 1 - 528 T + p^{3} T^{2} \)
47 \( 1 + 340 T + p^{3} T^{2} \)
53 \( 1 + 438 T + p^{3} T^{2} \)
59 \( 1 - 20 T + p^{3} T^{2} \)
61 \( 1 + 570 T + p^{3} T^{2} \)
67 \( 1 + 460 T + p^{3} T^{2} \)
71 \( 1 + 1092 T + p^{3} T^{2} \)
73 \( 1 + 562 T + p^{3} T^{2} \)
79 \( 1 - 16 T + p^{3} T^{2} \)
83 \( 1 + 372 T + p^{3} T^{2} \)
89 \( 1 + 966 T + p^{3} T^{2} \)
97 \( 1 + 526 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.19006251218915211552277133289, −10.85660797934741720806117522488, −8.772090369735353356673906875150, −7.926372491329169539228361320705, −7.21315452598863345440018093497, −5.86733141680236281432592538378, −4.59284218701746206559809718511, −4.20318469982873972522876409409, −3.05566527665222354951417324263, −1.64665048604234698926158528203, 1.64665048604234698926158528203, 3.05566527665222354951417324263, 4.20318469982873972522876409409, 4.59284218701746206559809718511, 5.86733141680236281432592538378, 7.21315452598863345440018093497, 7.926372491329169539228361320705, 8.772090369735353356673906875150, 10.85660797934741720806117522488, 11.19006251218915211552277133289

Graph of the $Z$-function along the critical line