L(s) = 1 | + (−1.43 + 1.20i)2-s + (0.439 − 2.49i)4-s + (−0.939 + 0.342i)5-s + (1.43 + 2.49i)8-s + (0.939 − 1.62i)10-s + (−2.70 − 0.984i)16-s + (−0.173 + 0.300i)17-s + (−0.173 − 0.300i)19-s + (0.439 + 2.49i)20-s + (0.266 − 1.50i)23-s + (0.766 − 0.642i)25-s + (−0.326 + 1.85i)31-s + (2.37 − 0.866i)32-s + (−0.113 − 0.642i)34-s + (0.613 + 0.223i)38-s + ⋯ |
L(s) = 1 | + (−1.43 + 1.20i)2-s + (0.439 − 2.49i)4-s + (−0.939 + 0.342i)5-s + (1.43 + 2.49i)8-s + (0.939 − 1.62i)10-s + (−2.70 − 0.984i)16-s + (−0.173 + 0.300i)17-s + (−0.173 − 0.300i)19-s + (0.439 + 2.49i)20-s + (0.266 − 1.50i)23-s + (0.766 − 0.642i)25-s + (−0.326 + 1.85i)31-s + (2.37 − 0.866i)32-s + (−0.113 − 0.642i)34-s + (0.613 + 0.223i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.727 - 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.727 - 0.686i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4256726598\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4256726598\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.939 - 0.342i)T \) |
good | 2 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 13 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.266 + 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 - 1.53T + T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.326 + 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.577347065091471986556174451238, −8.188633236726796233706539989438, −7.35850767033167572505889820119, −6.77122457426919923074650227200, −6.33311922646595650848629177910, −5.21588890274289728065229741595, −4.52451584254735246982064114925, −3.25482152994149404200979986188, −1.97415503454697068282505049397, −0.59216053786114074988228852767,
0.818411285232987218250108680304, 1.89360636568325936514760275043, 2.92490175828837020140944700301, 3.72524283649598164097925075182, 4.36836040833147650588306556614, 5.60522124914372545311094493305, 6.90367342704278733785075911700, 7.60953488240072512641321024474, 7.992594637785512745229878805060, 8.800201893510720247878880929981