L(s) = 1 | + (−1.43 + 1.20i)2-s + (0.439 − 2.49i)4-s + (−0.939 + 0.342i)5-s + (1.43 + 2.49i)8-s + (0.939 − 1.62i)10-s + (−2.70 − 0.984i)16-s + (−0.173 + 0.300i)17-s + (−0.173 − 0.300i)19-s + (0.439 + 2.49i)20-s + (0.266 − 1.50i)23-s + (0.766 − 0.642i)25-s + (−0.326 + 1.85i)31-s + (2.37 − 0.866i)32-s + (−0.113 − 0.642i)34-s + (0.613 + 0.223i)38-s + ⋯ |
L(s) = 1 | + (−1.43 + 1.20i)2-s + (0.439 − 2.49i)4-s + (−0.939 + 0.342i)5-s + (1.43 + 2.49i)8-s + (0.939 − 1.62i)10-s + (−2.70 − 0.984i)16-s + (−0.173 + 0.300i)17-s + (−0.173 − 0.300i)19-s + (0.439 + 2.49i)20-s + (0.266 − 1.50i)23-s + (0.766 − 0.642i)25-s + (−0.326 + 1.85i)31-s + (2.37 − 0.866i)32-s + (−0.113 − 0.642i)34-s + (0.613 + 0.223i)38-s + ⋯ |
Λ(s)=(=(3645s/2ΓC(s)L(s)(0.727−0.686i)Λ(1−s)
Λ(s)=(=(3645s/2ΓC(s)L(s)(0.727−0.686i)Λ(1−s)
Degree: |
2 |
Conductor: |
3645
= 36⋅5
|
Sign: |
0.727−0.686i
|
Analytic conductor: |
1.81909 |
Root analytic conductor: |
1.34873 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3645(404,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3645, ( :0), 0.727−0.686i)
|
Particular Values
L(21) |
≈ |
0.4256726598 |
L(21) |
≈ |
0.4256726598 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+(0.939−0.342i)T |
good | 2 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 7 | 1+(0.939−0.342i)T2 |
| 11 | 1+(−0.766−0.642i)T2 |
| 13 | 1+(−0.173−0.984i)T2 |
| 17 | 1+(0.173−0.300i)T+(−0.5−0.866i)T2 |
| 19 | 1+(0.173+0.300i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.266+1.50i)T+(−0.939−0.342i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+(−0.173−0.984i)T2 |
| 43 | 1+(−0.766−0.642i)T2 |
| 47 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 53 | 1−1.53T+T2 |
| 59 | 1+(−0.766+0.642i)T2 |
| 61 | 1+(0.326+1.85i)T+(−0.939+0.342i)T2 |
| 67 | 1+(−0.173−0.984i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(−1.17+0.984i)T+(0.173−0.984i)T2 |
| 83 | 1+(−0.266+0.223i)T+(0.173−0.984i)T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.577347065091471986556174451238, −8.188633236726796233706539989438, −7.35850767033167572505889820119, −6.77122457426919923074650227200, −6.33311922646595650848629177910, −5.21588890274289728065229741595, −4.52451584254735246982064114925, −3.25482152994149404200979986188, −1.97415503454697068282505049397, −0.59216053786114074988228852767,
0.818411285232987218250108680304, 1.89360636568325936514760275043, 2.92490175828837020140944700301, 3.72524283649598164097925075182, 4.36836040833147650588306556614, 5.60522124914372545311094493305, 6.90367342704278733785075911700, 7.60953488240072512641321024474, 7.992594637785512745229878805060, 8.800201893510720247878880929981