Properties

Label 2-366-1.1-c1-0-7
Degree $2$
Conductor $366$
Sign $-1$
Analytic cond. $2.92252$
Root an. cond. $1.70953$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 3·5-s − 6-s − 7-s − 8-s + 9-s + 3·10-s − 3·11-s + 12-s − 13-s + 14-s − 3·15-s + 16-s − 6·17-s − 18-s − 4·19-s − 3·20-s − 21-s + 3·22-s + 3·23-s − 24-s + 4·25-s + 26-s + 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.34·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.904·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.774·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s − 0.917·19-s − 0.670·20-s − 0.218·21-s + 0.639·22-s + 0.625·23-s − 0.204·24-s + 4/5·25-s + 0.196·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366\)    =    \(2 \cdot 3 \cdot 61\)
Sign: $-1$
Analytic conductor: \(2.92252\)
Root analytic conductor: \(1.70953\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 366,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
61 \( 1 - T \)
good5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93257693723723125654778976942, −10.00355305179054067338945705437, −8.872827440745571819543828173395, −8.251185706791234441455516215602, −7.40299316320484687999199352794, −6.56604464795087490836127725412, −4.79576132046549101101034444564, −3.61477936593783888825584024570, −2.38302524708346316952707169278, 0, 2.38302524708346316952707169278, 3.61477936593783888825584024570, 4.79576132046549101101034444564, 6.56604464795087490836127725412, 7.40299316320484687999199352794, 8.251185706791234441455516215602, 8.872827440745571819543828173395, 10.00355305179054067338945705437, 10.93257693723723125654778976942

Graph of the $Z$-function along the critical line