L(s) = 1 | + (1 + i)2-s + (1 + i)3-s + 2i·4-s + 2i·6-s + 4i·7-s + (−2 + 2i)8-s − i·9-s + (4 − 4i)11-s + (−2 + 2i)12-s + (−3 − 3i)13-s + (−4 + 4i)14-s − 4·16-s − 2·17-s + (1 − i)18-s + (−4 + 4i)21-s + 8·22-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (0.577 + 0.577i)3-s + i·4-s + 0.816i·6-s + 1.51i·7-s + (−0.707 + 0.707i)8-s − 0.333i·9-s + (1.20 − 1.20i)11-s + (−0.577 + 0.577i)12-s + (−0.832 − 0.832i)13-s + (−1.06 + 1.06i)14-s − 16-s − 0.485·17-s + (0.235 − 0.235i)18-s + (−0.872 + 0.872i)21-s + 1.70·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25160 + 1.87316i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25160 + 1.87316i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 5 | \( 1 - 5iT^{2} \) |
| 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 + (-4 + 4i)T - 11iT^{2} \) |
| 13 | \( 1 + (3 + 3i)T + 13iT^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 19iT^{2} \) |
| 29 | \( 1 + (-7 - 7i)T + 29iT^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 + (-4 + 4i)T - 37iT^{2} \) |
| 41 | \( 1 + 10iT - 41T^{2} \) |
| 43 | \( 1 + (4 - 4i)T - 43iT^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + (8 - 8i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7 + 7i)T - 59iT^{2} \) |
| 61 | \( 1 + (-2 - 2i)T + 61iT^{2} \) |
| 67 | \( 1 + (4 + 4i)T + 67iT^{2} \) |
| 71 | \( 1 + 14iT - 71T^{2} \) |
| 73 | \( 1 + 10iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + (-4 - 4i)T + 83iT^{2} \) |
| 89 | \( 1 - 6iT - 89T^{2} \) |
| 97 | \( 1 + 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06405003571749166823012809707, −10.95558083309029648444831939764, −9.336511776146398879549014842424, −8.914501515420554901772898283376, −8.141460975365559579415243351109, −6.68726371160253003477760300878, −5.86070609779474056281393104011, −4.88002365486117064789566382443, −3.53314278490370372718784437860, −2.75923361975828761520560075186,
1.39467549267263300822400929644, 2.55739915143767689554622403566, 4.22671008582789310146663312296, 4.57914800205004704045163082110, 6.63070554317015348478838123544, 7.01431035498464557021768319641, 8.272205048388940996844110924949, 9.742873861262560381185321382052, 10.07198832115740968967108547663, 11.36387821674999569325546176916