L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.366 − 0.366i)3-s + (0.499 − 0.866i)4-s + (−0.133 + 0.5i)6-s + 0.999i·8-s + 0.732i·9-s + (−0.133 − 0.499i)12-s + (1.36 − 1.36i)13-s + (−0.5 − 0.866i)16-s + (−0.366 − 0.633i)18-s − i·23-s + (0.366 + 0.366i)24-s + i·25-s + (−0.499 + 1.86i)26-s + (0.633 + 0.633i)27-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.366 − 0.366i)3-s + (0.499 − 0.866i)4-s + (−0.133 + 0.5i)6-s + 0.999i·8-s + 0.732i·9-s + (−0.133 − 0.499i)12-s + (1.36 − 1.36i)13-s + (−0.5 − 0.866i)16-s + (−0.366 − 0.633i)18-s − i·23-s + (0.366 + 0.366i)24-s + i·25-s + (−0.499 + 1.86i)26-s + (0.633 + 0.633i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6473200362\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6473200362\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 31 | \( 1 + 1.73T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - iT - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (1 + i)T + iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - 1.73iT - T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10025158620424430645550151522, −10.82801884634297712072593730078, −9.681726987500177409619191931476, −8.602863527232760458046152685760, −8.051453227933110312098111571159, −7.17476858582262702139087525377, −6.04188186891422268217424830116, −5.10217853641352127499414866638, −3.17016564172216996220731066541, −1.61530277404497518509584703417,
1.73662159237131722606297239654, 3.38746497867125279534496855041, 4.14735994161470851306565617641, 6.09937503521079588183333352657, 7.02235708913330005995240628311, 8.217042804921586586946965417214, 9.096226774102062502889232503216, 9.515794735118409278453335343667, 10.68445499292826896057307790900, 11.44419481145073010676614792395