L(s) = 1 | − i·2-s + (1 − i)3-s − 4-s + (−1 − i)6-s + i·8-s − i·9-s + (−1 + i)12-s + (−1 + i)13-s + 16-s − 18-s − i·23-s + (1 + i)24-s + i·25-s + (1 + i)26-s + (−1 + i)29-s + ⋯ |
L(s) = 1 | − i·2-s + (1 − i)3-s − 4-s + (−1 − i)6-s + i·8-s − i·9-s + (−1 + i)12-s + (−1 + i)13-s + 16-s − 18-s − i·23-s + (1 + i)24-s + i·25-s + (1 + i)26-s + (−1 + i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9602784148\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9602784148\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 23 | \( 1 + iT \) |
good | 3 | \( 1 + (-1 + i)T - iT^{2} \) |
| 5 | \( 1 - iT^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - iT^{2} \) |
| 13 | \( 1 + (1 - i)T - iT^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 29 | \( 1 + (1 - i)T - iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 2iT - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - 2T + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (1 + i)T + iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 2iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47801578832473025370070573525, −10.48642594060146291562550307604, −9.285404190152028619638844553390, −8.832928555136649763265159966721, −7.69790227231917311936749284203, −6.91320423440403641386906106046, −5.24984044923540213582331638384, −3.92173147148021763238424341617, −2.66439918347001726091211790418, −1.74348334154485590414732020256,
2.89760098781900648712615012659, 4.05160507481537054614070851378, 4.98097598267395051054219622754, 6.09404278525061925923110168166, 7.56044246992804208335755359480, 8.088331415801705837513086042720, 9.198323329426612619326075372760, 9.741326581684128073761556796810, 10.52811521856243914520236436704, 12.06266416961279480184273815918