L(s) = 1 | + 1.41i·3-s + i·5-s + 1.41·7-s − 1.00·9-s − 1.41·15-s + 2.00i·21-s + (0.707 + 0.707i)23-s − 25-s − 2·29-s + 1.41i·35-s + 1.41·43-s − 1.00i·45-s − 1.41i·47-s + 1.00·49-s + 2i·61-s + ⋯ |
L(s) = 1 | + 1.41i·3-s + i·5-s + 1.41·7-s − 1.00·9-s − 1.41·15-s + 2.00i·21-s + (0.707 + 0.707i)23-s − 25-s − 2·29-s + 1.41i·35-s + 1.41·43-s − 1.00i·45-s − 1.41i·47-s + 1.00·49-s + 2i·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.465288079\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.465288079\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 23 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 - 1.41iT - T^{2} \) |
| 7 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 29 | \( 1 + 2T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - 1.41T + T^{2} \) |
| 47 | \( 1 + 1.41iT - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 2iT - T^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.185011656366819057004722651379, −8.289766418167120323441580462607, −7.53719677485393465497867526051, −6.91182140120898536499860149278, −5.56568688111097945399740676029, −5.34159857376235789267827312960, −4.22632038965429708747826021741, −3.79649892183992764609763518039, −2.78429441309498527433453743490, −1.72864892486324085668323998487,
0.898793013711947164044818998452, 1.69201549300651204660739007246, 2.39194734127402469531436054638, 3.89943238926798088473593348898, 4.79404405812162345721164250856, 5.42579771580477089035382576214, 6.23100602016396711131122090659, 7.14783947168682036072420014203, 7.87109548028653309765548082995, 8.102426995493974857826306096839