L(s) = 1 | + (−1.32 − 1.14i)3-s + (0.989 + 0.142i)5-s + (0.778 + 1.70i)7-s + (0.296 + 2.06i)9-s + (−1.14 − 1.32i)15-s + (0.926 − 3.15i)21-s + (−0.877 + 0.479i)23-s + (0.959 + 0.281i)25-s + (1.02 − 1.59i)27-s + (0.239 − 0.153i)29-s + (0.527 + 1.79i)35-s + (−0.258 + 1.80i)41-s + (−1.27 + 1.47i)43-s + 2.08i·45-s − 1.60i·47-s + ⋯ |
L(s) = 1 | + (−1.32 − 1.14i)3-s + (0.989 + 0.142i)5-s + (0.778 + 1.70i)7-s + (0.296 + 2.06i)9-s + (−1.14 − 1.32i)15-s + (0.926 − 3.15i)21-s + (−0.877 + 0.479i)23-s + (0.959 + 0.281i)25-s + (1.02 − 1.59i)27-s + (0.239 − 0.153i)29-s + (0.527 + 1.79i)35-s + (−0.258 + 1.80i)41-s + (−1.27 + 1.47i)43-s + 2.08i·45-s − 1.60i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.789 - 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.789 - 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9652875344\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9652875344\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.989 - 0.142i)T \) |
| 23 | \( 1 + (0.877 - 0.479i)T \) |
good | 3 | \( 1 + (1.32 + 1.14i)T + (0.142 + 0.989i)T^{2} \) |
| 7 | \( 1 + (-0.778 - 1.70i)T + (-0.654 + 0.755i)T^{2} \) |
| 11 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 13 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 17 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 19 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 29 | \( 1 + (-0.239 + 0.153i)T + (0.415 - 0.909i)T^{2} \) |
| 31 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 37 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 41 | \( 1 + (0.258 - 1.80i)T + (-0.959 - 0.281i)T^{2} \) |
| 43 | \( 1 + (1.27 - 1.47i)T + (-0.142 - 0.989i)T^{2} \) |
| 47 | \( 1 + 1.60iT - T^{2} \) |
| 53 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 59 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 61 | \( 1 + (1.27 - 1.10i)T + (0.142 - 0.989i)T^{2} \) |
| 67 | \( 1 + (-1.91 - 0.562i)T + (0.841 + 0.540i)T^{2} \) |
| 71 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 73 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 79 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 83 | \( 1 + (0.0203 + 0.141i)T + (-0.959 + 0.281i)T^{2} \) |
| 89 | \( 1 + (0.425 + 0.368i)T + (0.142 + 0.989i)T^{2} \) |
| 97 | \( 1 + (-0.959 - 0.281i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.560193974750008602469099279060, −8.075325389422472549580709262335, −7.11292524519667267951582690642, −6.26089357353762796235999181071, −5.95628727530171735000203530191, −5.26624891031205343491754902225, −4.74389897609269384280066821743, −2.87561263759380585427731362651, −1.98714900030025530826807517106, −1.44894749247882164229499877326,
0.68702035729178542758674349644, 1.85776973504346510548650497415, 3.54074337422279746376624939766, 4.22985984311349061154390767971, 4.90447337509153944189343570625, 5.42017877899697221556293168490, 6.34661731010257753153128378253, 6.86974026462421421873504258963, 7.84990408288238963638085731318, 8.816338358369167226114289233400