L(s) = 1 | + (1.09 + 0.497i)3-s + (−0.755 − 0.654i)5-s + (1.64 − 1.05i)7-s + (0.285 + 0.329i)9-s + (−0.497 − 1.09i)15-s + (2.31 − 0.333i)21-s + (0.599 − 0.800i)23-s + (0.142 + 0.989i)25-s + (−0.190 − 0.647i)27-s + (−1.25 − 0.368i)29-s + (−1.93 − 0.278i)35-s + (−0.708 + 0.817i)41-s + (−0.729 + 1.59i)43-s − 0.436i·45-s − 0.142i·47-s + ⋯ |
L(s) = 1 | + (1.09 + 0.497i)3-s + (−0.755 − 0.654i)5-s + (1.64 − 1.05i)7-s + (0.285 + 0.329i)9-s + (−0.497 − 1.09i)15-s + (2.31 − 0.333i)21-s + (0.599 − 0.800i)23-s + (0.142 + 0.989i)25-s + (−0.190 − 0.647i)27-s + (−1.25 − 0.368i)29-s + (−1.93 − 0.278i)35-s + (−0.708 + 0.817i)41-s + (−0.729 + 1.59i)43-s − 0.436i·45-s − 0.142i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.808 + 0.588i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.808 + 0.588i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.906115632\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.906115632\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.755 + 0.654i)T \) |
| 23 | \( 1 + (-0.599 + 0.800i)T \) |
good | 3 | \( 1 + (-1.09 - 0.497i)T + (0.654 + 0.755i)T^{2} \) |
| 7 | \( 1 + (-1.64 + 1.05i)T + (0.415 - 0.909i)T^{2} \) |
| 11 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 13 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 17 | \( 1 + (0.841 + 0.540i)T^{2} \) |
| 19 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 29 | \( 1 + (1.25 + 0.368i)T + (0.841 + 0.540i)T^{2} \) |
| 31 | \( 1 + (-0.654 + 0.755i)T^{2} \) |
| 37 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 41 | \( 1 + (0.708 - 0.817i)T + (-0.142 - 0.989i)T^{2} \) |
| 43 | \( 1 + (0.729 - 1.59i)T + (-0.654 - 0.755i)T^{2} \) |
| 47 | \( 1 + 0.142iT - T^{2} \) |
| 53 | \( 1 + (0.415 - 0.909i)T^{2} \) |
| 59 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 61 | \( 1 + (-1.74 + 0.797i)T + (0.654 - 0.755i)T^{2} \) |
| 67 | \( 1 + (-0.0994 - 0.691i)T + (-0.959 + 0.281i)T^{2} \) |
| 71 | \( 1 + (-0.959 + 0.281i)T^{2} \) |
| 73 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 79 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 83 | \( 1 + (1.22 + 1.41i)T + (-0.142 + 0.989i)T^{2} \) |
| 89 | \( 1 + (-1.80 - 0.822i)T + (0.654 + 0.755i)T^{2} \) |
| 97 | \( 1 + (-0.142 - 0.989i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.529505867260315527596468832973, −7.947537552807281787971267507959, −7.62194398943483377381729460108, −6.62661397917501052559172023170, −5.21878626311066504081244890958, −4.65590458789864105735356932556, −4.02743116300192030575928637650, −3.37463734937184264094208059405, −2.12630305605077542984929108322, −1.05224602767372644078808664114,
1.66236203291104878264864555739, 2.27681551071833359156465535114, 3.17398191815913466890304235639, 3.97195211751783610767450591377, 5.09143248982754611236212811115, 5.63567856610402714854916817719, 6.98048495709471603173783506390, 7.44592784427851121662415834535, 8.086852005555389594001419695601, 8.650954471839809099903837315370