L(s) = 1 | + (−0.395 + 0.684i)2-s + (−1.70 − 0.279i)3-s + (0.687 + 1.19i)4-s + (−0.0693 − 0.120i)5-s + (0.866 − 1.05i)6-s + (2.32 − 4.02i)7-s − 2.66·8-s + (2.84 + 0.954i)9-s + 0.109·10-s + (−0.684 + 1.18i)11-s + (−0.842 − 2.22i)12-s + (−3.08 − 5.33i)13-s + (1.83 + 3.18i)14-s + (0.0850 + 0.224i)15-s + (−0.321 + 0.556i)16-s + 6.39·17-s + ⋯ |
L(s) = 1 | + (−0.279 + 0.484i)2-s + (−0.986 − 0.161i)3-s + (0.343 + 0.595i)4-s + (−0.0310 − 0.0537i)5-s + (0.353 − 0.432i)6-s + (0.878 − 1.52i)7-s − 0.943·8-s + (0.948 + 0.318i)9-s + 0.0346·10-s + (−0.206 + 0.357i)11-s + (−0.243 − 0.643i)12-s + (−0.854 − 1.48i)13-s + (0.491 + 0.850i)14-s + (0.0219 + 0.0580i)15-s + (−0.0802 + 0.139i)16-s + 1.55·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0252i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.986268 + 0.0124548i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.986268 + 0.0124548i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.70 + 0.279i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.395 - 0.684i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.0693 + 0.120i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.32 + 4.02i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.684 - 1.18i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.08 + 5.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 6.39T + 17T^{2} \) |
| 19 | \( 1 - 3.98T + 19T^{2} \) |
| 23 | \( 1 + (-2.79 - 4.84i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.62 + 2.80i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.67 - 6.36i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.00T + 37T^{2} \) |
| 43 | \( 1 + (0.911 - 1.57i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.89 + 6.75i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.89T + 53T^{2} \) |
| 59 | \( 1 + (0.751 + 1.30i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.283 + 0.490i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.62 - 2.82i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 9.51T + 71T^{2} \) |
| 73 | \( 1 + 2.79T + 73T^{2} \) |
| 79 | \( 1 + (-1.47 + 2.54i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.39 - 7.61i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 0.173T + 89T^{2} \) |
| 97 | \( 1 + (-4.90 + 8.48i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46354359755764195721006083268, −10.42998005010448271400764999733, −9.915105491305756740978488175178, −8.021204866697926934345574326282, −7.60890157296133683556928983596, −6.97003920467333678910625126717, −5.58404449524613548911368507523, −4.70108437411828508678452760102, −3.23147349857186246475388103978, −0.979973838076168965257486311897,
1.39305856144094617386071280861, 2.74207876006419458607058220340, 4.80826858211516856628153316739, 5.50050964446694268776183657858, 6.36011873233499369247159709933, 7.58096773040552827039645891916, 9.042005737712611233543562062157, 9.619796861391115430117152189987, 10.66214189652723325528586755774, 11.58939777827283803400400683639