L(s) = 1 | − 2-s + 0.732·3-s + 4-s + 5-s − 0.732·6-s − 4.73·7-s − 8-s − 2.46·9-s − 10-s − 5.46·11-s + 0.732·12-s − 5.46·13-s + 4.73·14-s + 0.732·15-s + 16-s + 5.46·17-s + 2.46·18-s + 6.19·19-s + 20-s − 3.46·21-s + 5.46·22-s − 8·23-s − 0.732·24-s + 25-s + 5.46·26-s − 4·27-s − 4.73·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.422·3-s + 0.5·4-s + 0.447·5-s − 0.298·6-s − 1.78·7-s − 0.353·8-s − 0.821·9-s − 0.316·10-s − 1.64·11-s + 0.211·12-s − 1.51·13-s + 1.26·14-s + 0.189·15-s + 0.250·16-s + 1.32·17-s + 0.580·18-s + 1.42·19-s + 0.223·20-s − 0.755·21-s + 1.16·22-s − 1.66·23-s − 0.149·24-s + 0.200·25-s + 1.07·26-s − 0.769·27-s − 0.894·28-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1−T |
| 37 | 1−T |
good | 3 | 1−0.732T+3T2 |
| 7 | 1+4.73T+7T2 |
| 11 | 1+5.46T+11T2 |
| 13 | 1+5.46T+13T2 |
| 17 | 1−5.46T+17T2 |
| 19 | 1−6.19T+19T2 |
| 23 | 1+8T+23T2 |
| 29 | 1−4.92T+29T2 |
| 31 | 1−0.732T+31T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−6.92T+43T2 |
| 47 | 1+4.73T+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+10.1T+59T2 |
| 61 | 1+4.92T+61T2 |
| 67 | 1+3.66T+67T2 |
| 71 | 1−2.92T+71T2 |
| 73 | 1+0.928T+73T2 |
| 79 | 1−8.73T+79T2 |
| 83 | 1+8.73T+83T2 |
| 89 | 1+2T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46326174053223918931304521411, −9.806964005969077029406927965912, −9.470504733169353546690605268090, −8.038043063656137002117730924866, −7.45397717871850861724929250526, −6.13419658720380308842395948086, −5.33494467746224220922225621034, −3.13746761846583704719760510993, −2.61882371334183910411617060775, 0,
2.61882371334183910411617060775, 3.13746761846583704719760510993, 5.33494467746224220922225621034, 6.13419658720380308842395948086, 7.45397717871850861724929250526, 8.038043063656137002117730924866, 9.470504733169353546690605268090, 9.806964005969077029406927965912, 10.46326174053223918931304521411