L(s) = 1 | + 2-s + 2·3-s + 4-s + 5-s + 2·6-s + 1.37·7-s + 8-s + 9-s + 10-s − 3.37·11-s + 2·12-s − 4.74·13-s + 1.37·14-s + 2·15-s + 16-s − 5.37·17-s + 18-s − 2·19-s + 20-s + 2.74·21-s − 3.37·22-s + 6.74·23-s + 2·24-s + 25-s − 4.74·26-s − 4·27-s + 1.37·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.15·3-s + 0.5·4-s + 0.447·5-s + 0.816·6-s + 0.518·7-s + 0.353·8-s + 0.333·9-s + 0.316·10-s − 1.01·11-s + 0.577·12-s − 1.31·13-s + 0.366·14-s + 0.516·15-s + 0.250·16-s − 1.30·17-s + 0.235·18-s − 0.458·19-s + 0.223·20-s + 0.598·21-s − 0.718·22-s + 1.40·23-s + 0.408·24-s + 0.200·25-s − 0.930·26-s − 0.769·27-s + 0.259·28-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.830337769 |
L(21) |
≈ |
2.830337769 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1−T |
| 37 | 1−T |
good | 3 | 1−2T+3T2 |
| 7 | 1−1.37T+7T2 |
| 11 | 1+3.37T+11T2 |
| 13 | 1+4.74T+13T2 |
| 17 | 1+5.37T+17T2 |
| 19 | 1+2T+19T2 |
| 23 | 1−6.74T+23T2 |
| 29 | 1−8.11T+29T2 |
| 31 | 1+2.62T+31T2 |
| 41 | 1−5.37T+41T2 |
| 43 | 1−7.37T+43T2 |
| 47 | 1+8.74T+47T2 |
| 53 | 1−1.37T+53T2 |
| 59 | 1−12.7T+59T2 |
| 61 | 1+5.37T+61T2 |
| 67 | 1−4.74T+67T2 |
| 71 | 1+6.74T+71T2 |
| 73 | 1−8.74T+73T2 |
| 79 | 1+4.74T+79T2 |
| 83 | 1+0.744T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+0.116T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38722906739153977350080833803, −10.54595895376619615626499094419, −9.480271056268451581901414239945, −8.554390353285712280271927196282, −7.67557411468823720785337737584, −6.70394729365155325435215824550, −5.26930273654908337611692424533, −4.46965523456966547152859814665, −2.86056370193655894657740559744, −2.24525849682385529795497473869,
2.24525849682385529795497473869, 2.86056370193655894657740559744, 4.46965523456966547152859814665, 5.26930273654908337611692424533, 6.70394729365155325435215824550, 7.67557411468823720785337737584, 8.554390353285712280271927196282, 9.480271056268451581901414239945, 10.54595895376619615626499094419, 11.38722906739153977350080833803