L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.758 − 2.83i)3-s + (−0.499 + 0.866i)4-s + (2.23 + 0.0488i)5-s + (−2.07 + 2.07i)6-s + (−0.644 − 2.40i)7-s + 0.999·8-s + (−4.84 + 2.79i)9-s + (−1.07 − 1.96i)10-s − 2.91i·11-s + (2.83 + 0.758i)12-s + (1.47 − 2.54i)13-s + (−1.76 + 1.76i)14-s + (−1.55 − 6.36i)15-s + (−0.5 − 0.866i)16-s + (−3.89 + 2.25i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.438 − 1.63i)3-s + (−0.249 + 0.433i)4-s + (0.999 + 0.0218i)5-s + (−0.846 + 0.846i)6-s + (−0.243 − 0.909i)7-s + 0.353·8-s + (−1.61 + 0.932i)9-s + (−0.340 − 0.619i)10-s − 0.878i·11-s + (0.817 + 0.219i)12-s + (0.407 − 0.706i)13-s + (−0.470 + 0.470i)14-s + (−0.402 − 1.64i)15-s + (−0.125 − 0.216i)16-s + (−0.945 + 0.545i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.993−0.116i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.993−0.116i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.993−0.116i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.993−0.116i)
|
Particular Values
L(1) |
≈ |
0.0555501+0.953699i |
L(21) |
≈ |
0.0555501+0.953699i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 5 | 1+(−2.23−0.0488i)T |
| 37 | 1+(−2.51−5.53i)T |
good | 3 | 1+(0.758+2.83i)T+(−2.59+1.5i)T2 |
| 7 | 1+(0.644+2.40i)T+(−6.06+3.5i)T2 |
| 11 | 1+2.91iT−11T2 |
| 13 | 1+(−1.47+2.54i)T+(−6.5−11.2i)T2 |
| 17 | 1+(3.89−2.25i)T+(8.5−14.7i)T2 |
| 19 | 1+(3.54−0.949i)T+(16.4−9.5i)T2 |
| 23 | 1−6.99T+23T2 |
| 29 | 1+(3.87−3.87i)T−29iT2 |
| 31 | 1+(−3.48−3.48i)T+31iT2 |
| 41 | 1+(4.86+2.81i)T+(20.5+35.5i)T2 |
| 43 | 1+9.87T+43T2 |
| 47 | 1+(−6.90+6.90i)T−47iT2 |
| 53 | 1+(−2.56+9.56i)T+(−45.8−26.5i)T2 |
| 59 | 1+(1.43−5.34i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−4.95+1.32i)T+(52.8−30.5i)T2 |
| 67 | 1+(3.36−0.901i)T+(58.0−33.5i)T2 |
| 71 | 1+(−8.12+14.0i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−1.91+1.91i)T−73iT2 |
| 79 | 1+(−4.93+1.32i)T+(68.4−39.5i)T2 |
| 83 | 1+(−2.48+9.27i)T+(−71.8−41.5i)T2 |
| 89 | 1+(−5.84−1.56i)T+(77.0+44.5i)T2 |
| 97 | 1−1.22iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79971245060857352001199610297, −10.44427969000285881431365618957, −8.894216822305488481442791998991, −8.211682409408098328662483666586, −6.92628323852528278625050600362, −6.42874989698329017826208311319, −5.23738451505446410672931455715, −3.28776261361521060631460829226, −1.91328394357270392097406505720, −0.77784879515372244757471272205,
2.44454503270605253382489617913, 4.29478923519073251775025133481, 5.08518341372492437844206768259, 5.98685652350658506262433296667, 6.83495785247823697137743660784, 8.696858211738579043784644269704, 9.294624274566049391374884222535, 9.725701538246112377574087351744, 10.75214304167900995239577198372, 11.46621150796145557723147219556