L(s) = 1 | + (0.939 − 0.342i)2-s + (−0.400 + 1.10i)3-s + (0.766 − 0.642i)4-s + (−0.0612 + 2.23i)5-s + 1.17i·6-s + (−3.81 + 0.672i)7-s + (0.500 − 0.866i)8-s + (1.24 + 1.04i)9-s + (0.706 + 2.12i)10-s + (−1.57 + 2.73i)11-s + (0.400 + 1.10i)12-s + (−1.40 + 1.17i)13-s + (−3.35 + 1.93i)14-s + (−2.43 − 0.962i)15-s + (0.173 − 0.984i)16-s + (4.46 + 3.74i)17-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (−0.231 + 0.635i)3-s + (0.383 − 0.321i)4-s + (−0.0273 + 0.999i)5-s + 0.477i·6-s + (−1.44 + 0.254i)7-s + (0.176 − 0.306i)8-s + (0.416 + 0.349i)9-s + (0.223 + 0.670i)10-s + (−0.476 + 0.825i)11-s + (0.115 + 0.317i)12-s + (−0.389 + 0.326i)13-s + (−0.896 + 0.517i)14-s + (−0.628 − 0.248i)15-s + (0.0434 − 0.246i)16-s + (1.08 + 0.908i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.0114−0.999i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.0114−0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.0114−0.999i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.0114−0.999i)
|
Particular Values
L(1) |
≈ |
1.05382+1.06597i |
L(21) |
≈ |
1.05382+1.06597i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939+0.342i)T |
| 5 | 1+(0.0612−2.23i)T |
| 37 | 1+(−5.80−1.80i)T |
good | 3 | 1+(0.400−1.10i)T+(−2.29−1.92i)T2 |
| 7 | 1+(3.81−0.672i)T+(6.57−2.39i)T2 |
| 11 | 1+(1.57−2.73i)T+(−5.5−9.52i)T2 |
| 13 | 1+(1.40−1.17i)T+(2.25−12.8i)T2 |
| 17 | 1+(−4.46−3.74i)T+(2.95+16.7i)T2 |
| 19 | 1+(−2.67+7.36i)T+(−14.5−12.2i)T2 |
| 23 | 1+(−0.0262−0.0453i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−3.42−1.97i)T+(14.5+25.1i)T2 |
| 31 | 1−1.88iT−31T2 |
| 41 | 1+(−2.75+2.30i)T+(7.11−40.3i)T2 |
| 43 | 1−2.80T+43T2 |
| 47 | 1+(−9.42+5.44i)T+(23.5−40.7i)T2 |
| 53 | 1+(12.8+2.25i)T+(49.8+18.1i)T2 |
| 59 | 1+(−12.1−2.13i)T+(55.4+20.1i)T2 |
| 61 | 1+(−0.0728−0.0867i)T+(−10.5+60.0i)T2 |
| 67 | 1+(−4.55+0.803i)T+(62.9−22.9i)T2 |
| 71 | 1+(12.4+4.52i)T+(54.3+45.6i)T2 |
| 73 | 1+4.68iT−73T2 |
| 79 | 1+(5.72−1.01i)T+(74.2−27.0i)T2 |
| 83 | 1+(−0.100+0.119i)T+(−14.4−81.7i)T2 |
| 89 | 1+(−2.80−0.493i)T+(83.6+30.4i)T2 |
| 97 | 1+(8.58+14.8i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.61165074981510916074955034359, −10.55895791606754626560184173737, −10.06275504572508759933543610857, −9.358651578408508432118154178426, −7.47823217403235682275702168111, −6.79409199851062583561527158792, −5.73515336435690449647362545474, −4.61340779494552158850755080465, −3.44782085787453599639932572201, −2.49627356114473406586285284795,
0.864788193645494325088382525638, 3.00681161568215514543829956084, 4.09285637138162362504077117580, 5.59720265937827018291246671135, 6.09174734227405604921479696258, 7.36121467980058653793624977183, 8.020208487223055701108663922343, 9.497864621987214171185664444223, 10.06338008452345607328260310091, 11.61473490791800706957817914605