L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.765 − 2.85i)3-s + (0.499 − 0.866i)4-s + (2.10 − 0.751i)5-s + (−2.09 − 2.09i)6-s + (−0.920 − 3.43i)7-s − 0.999i·8-s + (−4.98 + 2.87i)9-s + (1.44 − 1.70i)10-s + 4.83i·11-s + (−2.85 − 0.765i)12-s + (3.57 + 2.06i)13-s + (−2.51 − 2.51i)14-s + (−3.76 − 5.44i)15-s + (−0.5 − 0.866i)16-s + (3.48 + 6.03i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.442 − 1.65i)3-s + (0.249 − 0.433i)4-s + (0.941 − 0.336i)5-s + (−0.854 − 0.854i)6-s + (−0.348 − 1.29i)7-s − 0.353i·8-s + (−1.66 + 0.959i)9-s + (0.457 − 0.538i)10-s + 1.45i·11-s + (−0.825 − 0.221i)12-s + (0.991 + 0.572i)13-s + (−0.672 − 0.672i)14-s + (−0.971 − 1.40i)15-s + (−0.125 − 0.216i)16-s + (0.845 + 1.46i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.788+0.615i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.788+0.615i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.788+0.615i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.788+0.615i)
|
Particular Values
L(1) |
≈ |
0.593530−1.72506i |
L(21) |
≈ |
0.593530−1.72506i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1+(−2.10+0.751i)T |
| 37 | 1+(3.80+4.74i)T |
good | 3 | 1+(0.765+2.85i)T+(−2.59+1.5i)T2 |
| 7 | 1+(0.920+3.43i)T+(−6.06+3.5i)T2 |
| 11 | 1−4.83iT−11T2 |
| 13 | 1+(−3.57−2.06i)T+(6.5+11.2i)T2 |
| 17 | 1+(−3.48−6.03i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.30+4.86i)T+(−16.4+9.5i)T2 |
| 23 | 1−1.47iT−23T2 |
| 29 | 1+(2.37+2.37i)T+29iT2 |
| 31 | 1+(2.94−2.94i)T−31iT2 |
| 41 | 1+(−1.84−1.06i)T+(20.5+35.5i)T2 |
| 43 | 1−0.602iT−43T2 |
| 47 | 1+(2.33−2.33i)T−47iT2 |
| 53 | 1+(−0.651+2.42i)T+(−45.8−26.5i)T2 |
| 59 | 1+(2.34+0.628i)T+(51.0+29.5i)T2 |
| 61 | 1+(−1.69−6.31i)T+(−52.8+30.5i)T2 |
| 67 | 1+(−8.93+2.39i)T+(58.0−33.5i)T2 |
| 71 | 1+(−5.05+8.75i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−9.08+9.08i)T−73iT2 |
| 79 | 1+(−3.81−14.2i)T+(−68.4+39.5i)T2 |
| 83 | 1+(−0.985+3.67i)T+(−71.8−41.5i)T2 |
| 89 | 1+(2.51−9.39i)T+(−77.0−44.5i)T2 |
| 97 | 1+11.5T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.13502775576033663236058918347, −10.42092829643416969017767119443, −9.327679102608971268736306274759, −7.893081366737605768174969396837, −6.86822549190301812912144187460, −6.42263997352976296918562582306, −5.30649742789441783191507983645, −3.93902990012615312952132765417, −2.06043857745506889910521755065, −1.22789868162629254617862376201,
2.91599412954172665587942566527, 3.61727591713861369100154190083, 5.43336792908798295379962651226, 5.50666557687624731501860044018, 6.37814193634157440757872112580, 8.345449284173630527379532219998, 9.140239571423139242254985154577, 9.942526005968185908007231000781, 10.88794422852072864334394835360, 11.54153144131401361880182544190