L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.765 − 2.85i)3-s + (0.499 − 0.866i)4-s + (2.10 − 0.751i)5-s + (−2.09 − 2.09i)6-s + (−0.920 − 3.43i)7-s − 0.999i·8-s + (−4.98 + 2.87i)9-s + (1.44 − 1.70i)10-s + 4.83i·11-s + (−2.85 − 0.765i)12-s + (3.57 + 2.06i)13-s + (−2.51 − 2.51i)14-s + (−3.76 − 5.44i)15-s + (−0.5 − 0.866i)16-s + (3.48 + 6.03i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.442 − 1.65i)3-s + (0.249 − 0.433i)4-s + (0.941 − 0.336i)5-s + (−0.854 − 0.854i)6-s + (−0.348 − 1.29i)7-s − 0.353i·8-s + (−1.66 + 0.959i)9-s + (0.457 − 0.538i)10-s + 1.45i·11-s + (−0.825 − 0.221i)12-s + (0.991 + 0.572i)13-s + (−0.672 − 0.672i)14-s + (−0.971 − 1.40i)15-s + (−0.125 − 0.216i)16-s + (0.845 + 1.46i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.788 + 0.615i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.788 + 0.615i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.593530 - 1.72506i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.593530 - 1.72506i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (-2.10 + 0.751i)T \) |
| 37 | \( 1 + (3.80 + 4.74i)T \) |
good | 3 | \( 1 + (0.765 + 2.85i)T + (-2.59 + 1.5i)T^{2} \) |
| 7 | \( 1 + (0.920 + 3.43i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 - 4.83iT - 11T^{2} \) |
| 13 | \( 1 + (-3.57 - 2.06i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.48 - 6.03i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.30 + 4.86i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 1.47iT - 23T^{2} \) |
| 29 | \( 1 + (2.37 + 2.37i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.94 - 2.94i)T - 31iT^{2} \) |
| 41 | \( 1 + (-1.84 - 1.06i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 0.602iT - 43T^{2} \) |
| 47 | \( 1 + (2.33 - 2.33i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.651 + 2.42i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (2.34 + 0.628i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + (-1.69 - 6.31i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-8.93 + 2.39i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-5.05 + 8.75i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-9.08 + 9.08i)T - 73iT^{2} \) |
| 79 | \( 1 + (-3.81 - 14.2i)T + (-68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-0.985 + 3.67i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (2.51 - 9.39i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + 11.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13502775576033663236058918347, −10.42092829643416969017767119443, −9.327679102608971268736306274759, −7.893081366737605768174969396837, −6.86822549190301812912144187460, −6.42263997352976296918562582306, −5.30649742789441783191507983645, −3.93902990012615312952132765417, −2.06043857745506889910521755065, −1.22789868162629254617862376201,
2.91599412954172665587942566527, 3.61727591713861369100154190083, 5.43336792908798295379962651226, 5.50666557687624731501860044018, 6.37814193634157440757872112580, 8.345449284173630527379532219998, 9.140239571423139242254985154577, 9.942526005968185908007231000781, 10.88794422852072864334394835360, 11.54153144131401361880182544190