L(s) = 1 | + (0.342 + 0.939i)2-s + (3.03 + 1.10i)3-s + (−0.766 + 0.642i)4-s + (−0.984 + 0.173i)5-s + 3.23i·6-s + (0.130 + 0.739i)7-s + (−0.866 − 0.500i)8-s + (5.70 + 4.78i)9-s + (−0.5 − 0.866i)10-s + (1.20 − 2.08i)11-s + (−3.03 + 1.10i)12-s + (−2.83 − 3.37i)13-s + (−0.650 + 0.375i)14-s + (−3.18 − 0.561i)15-s + (0.173 − 0.984i)16-s + (−0.673 + 0.803i)17-s + ⋯ |
L(s) = 1 | + (0.241 + 0.664i)2-s + (1.75 + 0.638i)3-s + (−0.383 + 0.321i)4-s + (−0.440 + 0.0776i)5-s + 1.31i·6-s + (0.0492 + 0.279i)7-s + (−0.306 − 0.176i)8-s + (1.90 + 1.59i)9-s + (−0.158 − 0.273i)10-s + (0.363 − 0.628i)11-s + (−0.876 + 0.319i)12-s + (−0.784 − 0.935i)13-s + (−0.173 + 0.100i)14-s + (−0.821 − 0.144i)15-s + (0.0434 − 0.246i)16-s + (−0.163 + 0.194i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.000155 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.000155 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.65181 + 1.65207i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65181 + 1.65207i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 + (0.984 - 0.173i)T \) |
| 37 | \( 1 + (-5.29 - 2.99i)T \) |
good | 3 | \( 1 + (-3.03 - 1.10i)T + (2.29 + 1.92i)T^{2} \) |
| 7 | \( 1 + (-0.130 - 0.739i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-1.20 + 2.08i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.83 + 3.37i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (0.673 - 0.803i)T + (-2.95 - 16.7i)T^{2} \) |
| 19 | \( 1 + (1.37 - 3.78i)T + (-14.5 - 12.2i)T^{2} \) |
| 23 | \( 1 + (-2.42 + 1.40i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.43 + 3.13i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 10.5iT - 31T^{2} \) |
| 41 | \( 1 + (6.67 - 5.59i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + 6.19iT - 43T^{2} \) |
| 47 | \( 1 + (-1.01 - 1.76i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.313 + 1.77i)T + (-49.8 - 18.1i)T^{2} \) |
| 59 | \( 1 + (-5.19 - 0.916i)T + (55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-6.70 - 7.98i)T + (-10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (0.144 + 0.820i)T + (-62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (14.1 + 5.15i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + 2.93T + 73T^{2} \) |
| 79 | \( 1 + (7.33 - 1.29i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-3.30 - 2.77i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (13.8 + 2.43i)T + (83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (-3.56 + 2.05i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69409276457493748180815893237, −10.34597313185570058924709313858, −9.564750896622276423249593309503, −8.617136327553931455590084274987, −8.037829238447073534527240462939, −7.28882188846954998085426961735, −5.75082969928043520198765973238, −4.40714072176432070206307398827, −3.58477055598346365970824975802, −2.50732300401944597452733146494,
1.59568043697594910680473416229, 2.69884218255453287285036696783, 3.80138245452446769701476272020, 4.72888112997376833318795747664, 6.94990927770477433062854290329, 7.30799408686354881782644381400, 8.672424516974074227739199346710, 9.149962203642225313137040126739, 10.03981251870544168212313889430, 11.34207348682325376245377493114