L(s) = 1 | − i·2-s − 3.10·3-s − 4-s + i·5-s + 3.10i·6-s + 3.81·7-s + i·8-s + 6.62·9-s + 10-s − 4.91·11-s + 3.10·12-s − 3.62i·13-s − 3.81i·14-s − 3.10i·15-s + 16-s − 6.33i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.79·3-s − 0.5·4-s + 0.447i·5-s + 1.26i·6-s + 1.44·7-s + 0.353i·8-s + 2.20·9-s + 0.316·10-s − 1.48·11-s + 0.895·12-s − 1.00i·13-s − 1.01i·14-s − 0.801i·15-s + 0.250·16-s − 1.53i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.479 + 0.877i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.479 + 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.316475 - 0.533530i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.316475 - 0.533530i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 - iT \) |
| 37 | \( 1 + (-2.91 + 5.33i)T \) |
good | 3 | \( 1 + 3.10T + 3T^{2} \) |
| 7 | \( 1 - 3.81T + 7T^{2} \) |
| 11 | \( 1 + 4.91T + 11T^{2} \) |
| 13 | \( 1 + 3.62iT - 13T^{2} \) |
| 17 | \( 1 + 6.33iT - 17T^{2} \) |
| 19 | \( 1 - 5.10iT - 19T^{2} \) |
| 23 | \( 1 + 3.62iT - 23T^{2} \) |
| 29 | \( 1 + 6.91iT - 29T^{2} \) |
| 31 | \( 1 + 4.39iT - 31T^{2} \) |
| 41 | \( 1 - 5.49T + 41T^{2} \) |
| 43 | \( 1 + 4.91iT - 43T^{2} \) |
| 47 | \( 1 + 2.52T + 47T^{2} \) |
| 53 | \( 1 - 3.75T + 53T^{2} \) |
| 59 | \( 1 + 6.52iT - 59T^{2} \) |
| 61 | \( 1 - 8.33iT - 61T^{2} \) |
| 67 | \( 1 - 12.9T + 67T^{2} \) |
| 71 | \( 1 + 7.62T + 71T^{2} \) |
| 73 | \( 1 + 3.15T + 73T^{2} \) |
| 79 | \( 1 + 7.10iT - 79T^{2} \) |
| 83 | \( 1 + 14.3T + 83T^{2} \) |
| 89 | \( 1 - 12.4iT - 89T^{2} \) |
| 97 | \( 1 - 2.50iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14461613054728385379678841371, −10.51013538419584568348684618825, −9.885020748919131335432174170338, −8.058767809257064262936362077618, −7.41880249886794775960413903521, −5.80410064147084335077337122192, −5.25489651537270955427242124003, −4.34378041327204859113369277379, −2.38149182456606463498627883928, −0.57253874518889279046480561353,
1.44721676661157891359357735599, 4.44689520430763720914960289870, 5.00624569012031963966616369741, 5.72554692809842502880262909603, 6.83604696966976962959528422791, 7.77088713300587005319312080459, 8.730665851077557588114303916424, 10.11952955718796191752854520179, 10.99334284549834502875723172831, 11.48131579491141587861620989376