L(s) = 1 | − i·2-s − 3.10·3-s − 4-s + i·5-s + 3.10i·6-s + 3.81·7-s + i·8-s + 6.62·9-s + 10-s − 4.91·11-s + 3.10·12-s − 3.62i·13-s − 3.81i·14-s − 3.10i·15-s + 16-s − 6.33i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.79·3-s − 0.5·4-s + 0.447i·5-s + 1.26i·6-s + 1.44·7-s + 0.353i·8-s + 2.20·9-s + 0.316·10-s − 1.48·11-s + 0.895·12-s − 1.00i·13-s − 1.01i·14-s − 0.801i·15-s + 0.250·16-s − 1.53i·17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.479+0.877i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.479+0.877i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.479+0.877i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(221,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.479+0.877i)
|
Particular Values
L(1) |
≈ |
0.316475−0.533530i |
L(21) |
≈ |
0.316475−0.533530i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1−iT |
| 37 | 1+(−2.91+5.33i)T |
good | 3 | 1+3.10T+3T2 |
| 7 | 1−3.81T+7T2 |
| 11 | 1+4.91T+11T2 |
| 13 | 1+3.62iT−13T2 |
| 17 | 1+6.33iT−17T2 |
| 19 | 1−5.10iT−19T2 |
| 23 | 1+3.62iT−23T2 |
| 29 | 1+6.91iT−29T2 |
| 31 | 1+4.39iT−31T2 |
| 41 | 1−5.49T+41T2 |
| 43 | 1+4.91iT−43T2 |
| 47 | 1+2.52T+47T2 |
| 53 | 1−3.75T+53T2 |
| 59 | 1+6.52iT−59T2 |
| 61 | 1−8.33iT−61T2 |
| 67 | 1−12.9T+67T2 |
| 71 | 1+7.62T+71T2 |
| 73 | 1+3.15T+73T2 |
| 79 | 1+7.10iT−79T2 |
| 83 | 1+14.3T+83T2 |
| 89 | 1−12.4iT−89T2 |
| 97 | 1−2.50iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.14461613054728385379678841371, −10.51013538419584568348684618825, −9.885020748919131335432174170338, −8.058767809257064262936362077618, −7.41880249886794775960413903521, −5.80410064147084335077337122192, −5.25489651537270955427242124003, −4.34378041327204859113369277379, −2.38149182456606463498627883928, −0.57253874518889279046480561353,
1.44721676661157891359357735599, 4.44689520430763720914960289870, 5.00624569012031963966616369741, 5.72554692809842502880262909603, 6.83604696966976962959528422791, 7.77088713300587005319312080459, 8.730665851077557588114303916424, 10.11952955718796191752854520179, 10.99334284549834502875723172831, 11.48131579491141587861620989376