L(s) = 1 | − 2·3-s + 5-s + 9-s + 5·11-s + 4·13-s − 2·15-s + 3·17-s + 19-s + 8·23-s − 4·25-s + 4·27-s − 2·29-s − 4·31-s − 10·33-s + 10·37-s − 8·39-s − 10·41-s + 43-s + 45-s + 47-s − 6·51-s − 4·53-s + 5·55-s − 2·57-s − 6·59-s + 13·61-s + 4·65-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.447·5-s + 1/3·9-s + 1.50·11-s + 1.10·13-s − 0.516·15-s + 0.727·17-s + 0.229·19-s + 1.66·23-s − 4/5·25-s + 0.769·27-s − 0.371·29-s − 0.718·31-s − 1.74·33-s + 1.64·37-s − 1.28·39-s − 1.56·41-s + 0.152·43-s + 0.149·45-s + 0.145·47-s − 0.840·51-s − 0.549·53-s + 0.674·55-s − 0.264·57-s − 0.781·59-s + 1.66·61-s + 0.496·65-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3724s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.644301309 |
L(21) |
≈ |
1.644301309 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 19 | 1−T |
good | 3 | 1+2T+pT2 |
| 5 | 1−T+pT2 |
| 11 | 1−5T+pT2 |
| 13 | 1−4T+pT2 |
| 17 | 1−3T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1+2T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1+10T+pT2 |
| 43 | 1−T+pT2 |
| 47 | 1−T+pT2 |
| 53 | 1+4T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−13T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1+9T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+12T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.709339720534257240327886562953, −7.64552271968190118551531459773, −6.76474142604661213574836140046, −6.21156913138879588632301451179, −5.67409965982210077643645681036, −4.91419379168876950061294361671, −3.93593184874987401028815060034, −3.14091634253431942337825536555, −1.62016711898696823707962362202, −0.869557064463155631256543449078,
0.869557064463155631256543449078, 1.62016711898696823707962362202, 3.14091634253431942337825536555, 3.93593184874987401028815060034, 4.91419379168876950061294361671, 5.67409965982210077643645681036, 6.21156913138879588632301451179, 6.76474142604661213574836140046, 7.64552271968190118551531459773, 8.709339720534257240327886562953