Properties

Label 2-3724-1.1-c1-0-19
Degree $2$
Conductor $3724$
Sign $1$
Analytic cond. $29.7362$
Root an. cond. $5.45309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 9-s + 5·11-s + 4·13-s − 2·15-s + 3·17-s + 19-s + 8·23-s − 4·25-s + 4·27-s − 2·29-s − 4·31-s − 10·33-s + 10·37-s − 8·39-s − 10·41-s + 43-s + 45-s + 47-s − 6·51-s − 4·53-s + 5·55-s − 2·57-s − 6·59-s + 13·61-s + 4·65-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 1/3·9-s + 1.50·11-s + 1.10·13-s − 0.516·15-s + 0.727·17-s + 0.229·19-s + 1.66·23-s − 4/5·25-s + 0.769·27-s − 0.371·29-s − 0.718·31-s − 1.74·33-s + 1.64·37-s − 1.28·39-s − 1.56·41-s + 0.152·43-s + 0.149·45-s + 0.145·47-s − 0.840·51-s − 0.549·53-s + 0.674·55-s − 0.264·57-s − 0.781·59-s + 1.66·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3724\)    =    \(2^{2} \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(29.7362\)
Root analytic conductor: \(5.45309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3724,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.644301309\)
\(L(\frac12)\) \(\approx\) \(1.644301309\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - T + p T^{2} \)
53 \( 1 + 4 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 13 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.709339720534257240327886562953, −7.64552271968190118551531459773, −6.76474142604661213574836140046, −6.21156913138879588632301451179, −5.67409965982210077643645681036, −4.91419379168876950061294361671, −3.93593184874987401028815060034, −3.14091634253431942337825536555, −1.62016711898696823707962362202, −0.869557064463155631256543449078, 0.869557064463155631256543449078, 1.62016711898696823707962362202, 3.14091634253431942337825536555, 3.93593184874987401028815060034, 4.91419379168876950061294361671, 5.67409965982210077643645681036, 6.21156913138879588632301451179, 6.76474142604661213574836140046, 7.64552271968190118551531459773, 8.709339720534257240327886562953

Graph of the $Z$-function along the critical line