L(s) = 1 | + 3.23·3-s + 3.17·5-s + 7.48·9-s + 2.78·11-s − 5.61·13-s + 10.2·15-s + 2.92·17-s + 19-s + 6.95·23-s + 5.10·25-s + 14.5·27-s − 4.88·29-s − 4.91·31-s + 9.00·33-s + 1.15·37-s − 18.1·39-s − 4.32·41-s − 10.6·43-s + 23.7·45-s − 9.64·47-s + 9.45·51-s − 6.26·53-s + 8.83·55-s + 3.23·57-s − 5.91·59-s + 6.96·61-s − 17.8·65-s + ⋯ |
L(s) = 1 | + 1.86·3-s + 1.42·5-s + 2.49·9-s + 0.838·11-s − 1.55·13-s + 2.65·15-s + 0.708·17-s + 0.229·19-s + 1.45·23-s + 1.02·25-s + 2.79·27-s − 0.906·29-s − 0.883·31-s + 1.56·33-s + 0.190·37-s − 2.90·39-s − 0.674·41-s − 1.62·43-s + 3.54·45-s − 1.40·47-s + 1.32·51-s − 0.861·53-s + 1.19·55-s + 0.428·57-s − 0.769·59-s + 0.891·61-s − 2.21·65-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3724s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.238983453 |
L(21) |
≈ |
5.238983453 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 19 | 1−T |
good | 3 | 1−3.23T+3T2 |
| 5 | 1−3.17T+5T2 |
| 11 | 1−2.78T+11T2 |
| 13 | 1+5.61T+13T2 |
| 17 | 1−2.92T+17T2 |
| 23 | 1−6.95T+23T2 |
| 29 | 1+4.88T+29T2 |
| 31 | 1+4.91T+31T2 |
| 37 | 1−1.15T+37T2 |
| 41 | 1+4.32T+41T2 |
| 43 | 1+10.6T+43T2 |
| 47 | 1+9.64T+47T2 |
| 53 | 1+6.26T+53T2 |
| 59 | 1+5.91T+59T2 |
| 61 | 1−6.96T+61T2 |
| 67 | 1−0.156T+67T2 |
| 71 | 1−1.41T+71T2 |
| 73 | 1−11.8T+73T2 |
| 79 | 1+10.8T+79T2 |
| 83 | 1+3.48T+83T2 |
| 89 | 1+7.79T+89T2 |
| 97 | 1−18.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.715006386899096462249818364185, −7.82887823109003117612036425068, −7.13569964636920035186747439810, −6.58623164598755074111940001278, −5.35442409350998846362627690028, −4.72395929262658246535685385918, −3.52273313709299378174999463999, −2.95048219673612103731649088490, −2.02604116217972944272622510662, −1.47810733044619875012923818120,
1.47810733044619875012923818120, 2.02604116217972944272622510662, 2.95048219673612103731649088490, 3.52273313709299378174999463999, 4.72395929262658246535685385918, 5.35442409350998846362627690028, 6.58623164598755074111940001278, 7.13569964636920035186747439810, 7.82887823109003117612036425068, 8.715006386899096462249818364185