L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (−1 + 1.73i)23-s − 43-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + (−0.5 + 0.866i)61-s + (−0.5 − 0.866i)73-s + (−0.499 − 0.866i)81-s − 2·83-s + 0.999·85-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (−1 + 1.73i)23-s − 43-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + (−0.5 + 0.866i)61-s + (−0.5 − 0.866i)73-s + (−0.499 − 0.866i)81-s − 2·83-s + 0.999·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7909298258\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7909298258\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.048616211462397993847955943489, −8.057432989909275422487080002864, −7.35778004714409328051748199250, −7.04136499346802271328214882555, −6.04244948035794181222370909854, −5.14319191255763356976977400963, −4.44912547678862069342612598912, −3.42604861988246881576847567162, −2.69553600530230036484334596130, −1.69620310924035666304499455531,
0.44657338964641443807477173670, 1.66573020750314684042702900610, 3.02763530166876607375185831068, 3.87516854703353057433343640847, 4.42941452020313430966528628575, 5.52147903420193745335290785175, 6.20290676487627219566036145459, 6.76694191394180329297765370560, 8.030873348295406610039220135554, 8.484499916256035092218116157487