L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (−1 + 1.73i)23-s − 43-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + (−0.5 + 0.866i)61-s + (−0.5 − 0.866i)73-s + (−0.499 − 0.866i)81-s − 2·83-s + 0.999·85-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)5-s + (−0.5 + 0.866i)9-s + (0.5 + 0.866i)11-s + (−0.5 − 0.866i)17-s + (0.5 − 0.866i)19-s + (−1 + 1.73i)23-s − 43-s + (−0.499 − 0.866i)45-s + (−0.5 + 0.866i)47-s − 0.999·55-s + (−0.5 + 0.866i)61-s + (−0.5 − 0.866i)73-s + (−0.499 − 0.866i)81-s − 2·83-s + 0.999·85-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)(−0.701−0.712i)Λ(1−s)
Λ(s)=(=(3724s/2ΓC(s)L(s)(−0.701−0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
3724
= 22⋅72⋅19
|
Sign: |
−0.701−0.712i
|
Analytic conductor: |
1.85851 |
Root analytic conductor: |
1.36327 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3724(569,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3724, ( :0), −0.701−0.712i)
|
Particular Values
L(21) |
≈ |
0.7909298258 |
L(21) |
≈ |
0.7909298258 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 19 | 1+(−0.5+0.866i)T |
good | 3 | 1+(0.5−0.866i)T2 |
| 5 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+2T+T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.048616211462397993847955943489, −8.057432989909275422487080002864, −7.35778004714409328051748199250, −7.04136499346802271328214882555, −6.04244948035794181222370909854, −5.14319191255763356976977400963, −4.44912547678862069342612598912, −3.42604861988246881576847567162, −2.69553600530230036484334596130, −1.69620310924035666304499455531,
0.44657338964641443807477173670, 1.66573020750314684042702900610, 3.02763530166876607375185831068, 3.87516854703353057433343640847, 4.42941452020313430966528628575, 5.52147903420193745335290785175, 6.20290676487627219566036145459, 6.76694191394180329297765370560, 8.030873348295406610039220135554, 8.484499916256035092218116157487