L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.499 + 0.866i)6-s + 0.999i·8-s + i·11-s + 0.999i·12-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (−0.5 + 0.866i)22-s + (−0.866 + 0.5i)23-s + (−0.5 + 0.866i)24-s + (0.5 + 0.866i)25-s + 0.999i·26-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.499 + 0.866i)6-s + 0.999i·8-s + i·11-s + 0.999i·12-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (−0.5 + 0.866i)22-s + (−0.866 + 0.5i)23-s + (−0.5 + 0.866i)24-s + (0.5 + 0.866i)25-s + 0.999i·26-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)(−0.211−0.977i)Λ(1−s)
Λ(s)=(=(3724s/2ΓC(s)L(s)(−0.211−0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
3724
= 22⋅72⋅19
|
Sign: |
−0.211−0.977i
|
Analytic conductor: |
1.85851 |
Root analytic conductor: |
1.36327 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3724(3431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3724, ( :0), −0.211−0.977i)
|
Particular Values
L(21) |
≈ |
2.815327552 |
L(21) |
≈ |
2.815327552 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 7 | 1 |
| 19 | 1+(0.866+0.5i)T |
good | 3 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 5 | 1+(−0.5−0.866i)T2 |
| 11 | 1−iT−T2 |
| 13 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 31 | 1+iT−T2 |
| 37 | 1−T+T2 |
| 41 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 47 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.058237094233260455568179815225, −7.86906738510917640599563475639, −7.60795011787031128138602774869, −6.55317951424837402842115975678, −6.02189186281492031888359515432, −4.91036020281776479070697520718, −4.27026675870591517719560576562, −3.68553179156600485277215250780, −2.72956116339424830848870014805, −1.96731395285619897931016149609,
1.16019925302006036032582390610, 2.17293044368975333148887017350, 2.99915762846065234162644832217, 3.62466116095247499080432083322, 4.47272940884091267071342294289, 5.73484887567308191455206168245, 5.91989624513621390697092791723, 6.96323025341566582446910436811, 7.83955196063509924204949394575, 8.496607066947543617901941050601