L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.499 + 0.866i)6-s + 0.999i·8-s + i·11-s + 0.999i·12-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (−0.5 + 0.866i)22-s + (−0.866 + 0.5i)23-s + (−0.5 + 0.866i)24-s + (0.5 + 0.866i)25-s + 0.999i·26-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 + 0.866i)4-s + (0.499 + 0.866i)6-s + 0.999i·8-s + i·11-s + 0.999i·12-s + (0.5 + 0.866i)13-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.866 − 0.5i)19-s + (−0.5 + 0.866i)22-s + (−0.866 + 0.5i)23-s + (−0.5 + 0.866i)24-s + (0.5 + 0.866i)25-s + 0.999i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.211 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.815327552\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.815327552\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
good | 3 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - iT - T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.058237094233260455568179815225, −7.86906738510917640599563475639, −7.60795011787031128138602774869, −6.55317951424837402842115975678, −6.02189186281492031888359515432, −4.91036020281776479070697520718, −4.27026675870591517719560576562, −3.68553179156600485277215250780, −2.72956116339424830848870014805, −1.96731395285619897931016149609,
1.16019925302006036032582390610, 2.17293044368975333148887017350, 2.99915762846065234162644832217, 3.62466116095247499080432083322, 4.47272940884091267071342294289, 5.73484887567308191455206168245, 5.91989624513621390697092791723, 6.96323025341566582446910436811, 7.83955196063509924204949394575, 8.496607066947543617901941050601