L(s) = 1 | + (−0.109 + 1.46i)5-s + (−0.900 + 0.433i)7-s + (0.365 + 0.930i)9-s + (0.455 − 1.16i)11-s + (−1.40 + 1.29i)17-s + (−0.5 + 0.866i)19-s + (−0.535 − 0.496i)23-s + (−1.13 − 0.171i)25-s + (−0.535 − 1.36i)35-s + (−1.72 − 0.829i)43-s + (−1.40 + 0.432i)45-s + (1.78 − 0.268i)47-s + (0.623 − 0.781i)49-s + (1.64 + 0.793i)55-s + (1.19 + 0.367i)61-s + ⋯ |
L(s) = 1 | + (−0.109 + 1.46i)5-s + (−0.900 + 0.433i)7-s + (0.365 + 0.930i)9-s + (0.455 − 1.16i)11-s + (−1.40 + 1.29i)17-s + (−0.5 + 0.866i)19-s + (−0.535 − 0.496i)23-s + (−1.13 − 0.171i)25-s + (−0.535 − 1.36i)35-s + (−1.72 − 0.829i)43-s + (−1.40 + 0.432i)45-s + (1.78 − 0.268i)47-s + (0.623 − 0.781i)49-s + (1.64 + 0.793i)55-s + (1.19 + 0.367i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.949 - 0.315i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.949 - 0.315i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7137107258\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7137107258\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.900 - 0.433i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 5 | \( 1 + (0.109 - 1.46i)T + (-0.988 - 0.149i)T^{2} \) |
| 11 | \( 1 + (-0.455 + 1.16i)T + (-0.733 - 0.680i)T^{2} \) |
| 13 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 + (1.40 - 1.29i)T + (0.0747 - 0.997i)T^{2} \) |
| 23 | \( 1 + (0.535 + 0.496i)T + (0.0747 + 0.997i)T^{2} \) |
| 29 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 41 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 43 | \( 1 + (1.72 + 0.829i)T + (0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (-1.78 + 0.268i)T + (0.955 - 0.294i)T^{2} \) |
| 53 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 59 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 61 | \( 1 + (-1.19 - 0.367i)T + (0.826 + 0.563i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (1.97 + 0.298i)T + (0.955 + 0.294i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.914 - 1.14i)T + (-0.222 - 0.974i)T^{2} \) |
| 89 | \( 1 + (0.733 - 0.680i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.733816088153255774520067036561, −8.479519301126154577843604438093, −7.43166160362749635226407274303, −6.65101996479075985949730215520, −6.24936475616732154453383069491, −5.56628044551996701027822282647, −4.14189059143065900667319945570, −3.63160119499145956504063561616, −2.65899609260268344223543869833, −1.94945831837895790343847654678,
0.39244817662955645289995198493, 1.56465631318067239855286659987, 2.78296147793536805615972380305, 4.06008593857096166952233209463, 4.39430118510698688722182990151, 5.17265396210580929283830367715, 6.30526079081185385394328337247, 6.91036443293047457247662042505, 7.45427908966747987567576936973, 8.692561415991109523236308608743