L(s) = 1 | + (−0.109 + 1.46i)5-s + (−0.900 + 0.433i)7-s + (0.365 + 0.930i)9-s + (0.455 − 1.16i)11-s + (−1.40 + 1.29i)17-s + (−0.5 + 0.866i)19-s + (−0.535 − 0.496i)23-s + (−1.13 − 0.171i)25-s + (−0.535 − 1.36i)35-s + (−1.72 − 0.829i)43-s + (−1.40 + 0.432i)45-s + (1.78 − 0.268i)47-s + (0.623 − 0.781i)49-s + (1.64 + 0.793i)55-s + (1.19 + 0.367i)61-s + ⋯ |
L(s) = 1 | + (−0.109 + 1.46i)5-s + (−0.900 + 0.433i)7-s + (0.365 + 0.930i)9-s + (0.455 − 1.16i)11-s + (−1.40 + 1.29i)17-s + (−0.5 + 0.866i)19-s + (−0.535 − 0.496i)23-s + (−1.13 − 0.171i)25-s + (−0.535 − 1.36i)35-s + (−1.72 − 0.829i)43-s + (−1.40 + 0.432i)45-s + (1.78 − 0.268i)47-s + (0.623 − 0.781i)49-s + (1.64 + 0.793i)55-s + (1.19 + 0.367i)61-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)(−0.949−0.315i)Λ(1−s)
Λ(s)=(=(3724s/2ΓC(s)L(s)(−0.949−0.315i)Λ(1−s)
Degree: |
2 |
Conductor: |
3724
= 22⋅72⋅19
|
Sign: |
−0.949−0.315i
|
Analytic conductor: |
1.85851 |
Root analytic conductor: |
1.36327 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3724(3229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3724, ( :0), −0.949−0.315i)
|
Particular Values
L(21) |
≈ |
0.7137107258 |
L(21) |
≈ |
0.7137107258 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.900−0.433i)T |
| 19 | 1+(0.5−0.866i)T |
good | 3 | 1+(−0.365−0.930i)T2 |
| 5 | 1+(0.109−1.46i)T+(−0.988−0.149i)T2 |
| 11 | 1+(−0.455+1.16i)T+(−0.733−0.680i)T2 |
| 13 | 1+(0.222−0.974i)T2 |
| 17 | 1+(1.40−1.29i)T+(0.0747−0.997i)T2 |
| 23 | 1+(0.535+0.496i)T+(0.0747+0.997i)T2 |
| 29 | 1+(0.900−0.433i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(−0.826−0.563i)T2 |
| 41 | 1+(−0.623+0.781i)T2 |
| 43 | 1+(1.72+0.829i)T+(0.623+0.781i)T2 |
| 47 | 1+(−1.78+0.268i)T+(0.955−0.294i)T2 |
| 53 | 1+(−0.826+0.563i)T2 |
| 59 | 1+(0.988−0.149i)T2 |
| 61 | 1+(−1.19−0.367i)T+(0.826+0.563i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+(0.900+0.433i)T2 |
| 73 | 1+(1.97+0.298i)T+(0.955+0.294i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.914−1.14i)T+(−0.222−0.974i)T2 |
| 89 | 1+(0.733−0.680i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.733816088153255774520067036561, −8.479519301126154577843604438093, −7.43166160362749635226407274303, −6.65101996479075985949730215520, −6.24936475616732154453383069491, −5.56628044551996701027822282647, −4.14189059143065900667319945570, −3.63160119499145956504063561616, −2.65899609260268344223543869833, −1.94945831837895790343847654678,
0.39244817662955645289995198493, 1.56465631318067239855286659987, 2.78296147793536805615972380305, 4.06008593857096166952233209463, 4.39430118510698688722182990151, 5.17265396210580929283830367715, 6.30526079081185385394328337247, 6.91036443293047457247662042505, 7.45427908966747987567576936973, 8.692561415991109523236308608743