L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.429 − 1.32i)3-s + (0.309 + 0.951i)4-s + (1.85 − 1.34i)5-s + (−1.12 + 0.817i)6-s + (0.942 + 2.90i)7-s + (0.309 − 0.951i)8-s + (0.863 + 0.627i)9-s − 2.29·10-s + (0.309 − 3.30i)11-s + 1.39·12-s + (5.34 + 3.88i)13-s + (0.942 − 2.90i)14-s + (−0.985 − 3.03i)15-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.248 − 0.763i)3-s + (0.154 + 0.475i)4-s + (0.830 − 0.603i)5-s + (−0.459 + 0.333i)6-s + (0.356 + 1.09i)7-s + (0.109 − 0.336i)8-s + (0.287 + 0.209i)9-s − 0.725·10-s + (0.0931 − 0.995i)11-s + 0.401·12-s + (1.48 + 1.07i)13-s + (0.251 − 0.775i)14-s + (−0.254 − 0.783i)15-s + (−0.202 + 0.146i)16-s + (−0.196 + 0.142i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 374 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 374 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.530 + 0.847i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22132 - 0.676769i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22132 - 0.676769i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 11 | \( 1 + (-0.309 + 3.30i)T \) |
| 17 | \( 1 + (0.809 - 0.587i)T \) |
good | 3 | \( 1 + (-0.429 + 1.32i)T + (-2.42 - 1.76i)T^{2} \) |
| 5 | \( 1 + (-1.85 + 1.34i)T + (1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-0.942 - 2.90i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-5.34 - 3.88i)T + (4.01 + 12.3i)T^{2} \) |
| 19 | \( 1 + (-0.0488 + 0.150i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 7.94T + 23T^{2} \) |
| 29 | \( 1 + (1.93 + 5.95i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (1.11 + 0.809i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.68 + 8.27i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (2.33 - 7.18i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 1.25T + 43T^{2} \) |
| 47 | \( 1 + (-1.77 + 5.47i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (1.87 + 1.35i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.698 - 2.14i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (4.61 - 3.34i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 2.53T + 67T^{2} \) |
| 71 | \( 1 + (12.2 - 8.90i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-4.23 - 13.0i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (11.6 + 8.44i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-10.5 + 7.64i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 1.57T + 89T^{2} \) |
| 97 | \( 1 + (-3.17 - 2.30i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41934411854539442105418296292, −10.24893172547183085222906172209, −9.087192501923558972466086714404, −8.672726842439180856451389796668, −7.81663300377865254747217716839, −6.35629220345614973391262096136, −5.69568600243164151895838654328, −4.01648946923665165162246099727, −2.24127718975178100684997857127, −1.49709257577270784392572887495,
1.57708054583562620862334466561, 3.45260113001573471554510767425, 4.56448025169199764498573848118, 5.92081404357743250984557654464, 6.85348150686694695914599985229, 7.79352289765152822140224182906, 8.877363591389766658189718902643, 9.921975213592566942232973522185, 10.36310610407145085075959057133, 10.91118667214868669598432002598