L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.429 − 1.32i)3-s + (0.309 + 0.951i)4-s + (1.85 − 1.34i)5-s + (−1.12 + 0.817i)6-s + (0.942 + 2.90i)7-s + (0.309 − 0.951i)8-s + (0.863 + 0.627i)9-s − 2.29·10-s + (0.309 − 3.30i)11-s + 1.39·12-s + (5.34 + 3.88i)13-s + (0.942 − 2.90i)14-s + (−0.985 − 3.03i)15-s + (−0.809 + 0.587i)16-s + (−0.809 + 0.587i)17-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.248 − 0.763i)3-s + (0.154 + 0.475i)4-s + (0.830 − 0.603i)5-s + (−0.459 + 0.333i)6-s + (0.356 + 1.09i)7-s + (0.109 − 0.336i)8-s + (0.287 + 0.209i)9-s − 0.725·10-s + (0.0931 − 0.995i)11-s + 0.401·12-s + (1.48 + 1.07i)13-s + (0.251 − 0.775i)14-s + (−0.254 − 0.783i)15-s + (−0.202 + 0.146i)16-s + (−0.196 + 0.142i)17-s + ⋯ |
Λ(s)=(=(374s/2ΓC(s)L(s)(0.530+0.847i)Λ(2−s)
Λ(s)=(=(374s/2ΓC(s+1/2)L(s)(0.530+0.847i)Λ(1−s)
Degree: |
2 |
Conductor: |
374
= 2⋅11⋅17
|
Sign: |
0.530+0.847i
|
Analytic conductor: |
2.98640 |
Root analytic conductor: |
1.72812 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ374(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 374, ( :1/2), 0.530+0.847i)
|
Particular Values
L(1) |
≈ |
1.22132−0.676769i |
L(21) |
≈ |
1.22132−0.676769i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.809+0.587i)T |
| 11 | 1+(−0.309+3.30i)T |
| 17 | 1+(0.809−0.587i)T |
good | 3 | 1+(−0.429+1.32i)T+(−2.42−1.76i)T2 |
| 5 | 1+(−1.85+1.34i)T+(1.54−4.75i)T2 |
| 7 | 1+(−0.942−2.90i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−5.34−3.88i)T+(4.01+12.3i)T2 |
| 19 | 1+(−0.0488+0.150i)T+(−15.3−11.1i)T2 |
| 23 | 1+7.94T+23T2 |
| 29 | 1+(1.93+5.95i)T+(−23.4+17.0i)T2 |
| 31 | 1+(1.11+0.809i)T+(9.57+29.4i)T2 |
| 37 | 1+(2.68+8.27i)T+(−29.9+21.7i)T2 |
| 41 | 1+(2.33−7.18i)T+(−33.1−24.0i)T2 |
| 43 | 1−1.25T+43T2 |
| 47 | 1+(−1.77+5.47i)T+(−38.0−27.6i)T2 |
| 53 | 1+(1.87+1.35i)T+(16.3+50.4i)T2 |
| 59 | 1+(−0.698−2.14i)T+(−47.7+34.6i)T2 |
| 61 | 1+(4.61−3.34i)T+(18.8−58.0i)T2 |
| 67 | 1+2.53T+67T2 |
| 71 | 1+(12.2−8.90i)T+(21.9−67.5i)T2 |
| 73 | 1+(−4.23−13.0i)T+(−59.0+42.9i)T2 |
| 79 | 1+(11.6+8.44i)T+(24.4+75.1i)T2 |
| 83 | 1+(−10.5+7.64i)T+(25.6−78.9i)T2 |
| 89 | 1+1.57T+89T2 |
| 97 | 1+(−3.17−2.30i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.41934411854539442105418296292, −10.24893172547183085222906172209, −9.087192501923558972466086714404, −8.672726842439180856451389796668, −7.81663300377865254747217716839, −6.35629220345614973391262096136, −5.69568600243164151895838654328, −4.01648946923665165162246099727, −2.24127718975178100684997857127, −1.49709257577270784392572887495,
1.57708054583562620862334466561, 3.45260113001573471554510767425, 4.56448025169199764498573848118, 5.92081404357743250984557654464, 6.85348150686694695914599985229, 7.79352289765152822140224182906, 8.877363591389766658189718902643, 9.921975213592566942232973522185, 10.36310610407145085075959057133, 10.91118667214868669598432002598