Properties

Label 2-3744-1.1-c1-0-46
Degree $2$
Conductor $3744$
Sign $-1$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.561·5-s + 0.561·7-s + 2·11-s − 13-s + 0.561·17-s − 6·19-s − 4.68·25-s + 8.24·29-s − 7.12·31-s − 0.315·35-s − 9.68·37-s − 7.12·41-s + 8.80·43-s + 1.68·47-s − 6.68·49-s + 4.87·53-s − 1.12·55-s − 6·59-s + 13.3·61-s + 0.561·65-s − 6·67-s − 1.68·71-s + 10·73-s + 1.12·77-s − 12·79-s − 17.3·83-s − 0.315·85-s + ⋯
L(s)  = 1  − 0.251·5-s + 0.212·7-s + 0.603·11-s − 0.277·13-s + 0.136·17-s − 1.37·19-s − 0.936·25-s + 1.53·29-s − 1.27·31-s − 0.0533·35-s − 1.59·37-s − 1.11·41-s + 1.34·43-s + 0.245·47-s − 0.954·49-s + 0.669·53-s − 0.151·55-s − 0.781·59-s + 1.71·61-s + 0.0696·65-s − 0.733·67-s − 0.199·71-s + 1.17·73-s + 0.127·77-s − 1.35·79-s − 1.90·83-s − 0.0342·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 - 0.561T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 - 0.561T + 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 + 7.12T + 31T^{2} \)
37 \( 1 + 9.68T + 37T^{2} \)
41 \( 1 + 7.12T + 41T^{2} \)
43 \( 1 - 8.80T + 43T^{2} \)
47 \( 1 - 1.68T + 47T^{2} \)
53 \( 1 - 4.87T + 53T^{2} \)
59 \( 1 + 6T + 59T^{2} \)
61 \( 1 - 13.3T + 61T^{2} \)
67 \( 1 + 6T + 67T^{2} \)
71 \( 1 + 1.68T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 17.3T + 83T^{2} \)
89 \( 1 - 8.24T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.310080589934033374812375342089, −7.33713268528036076349461049532, −6.74069179733242319110287892029, −5.94728239294354965613847389707, −5.08379743035954149505590828294, −4.23642977810300404332541306626, −3.58569493556401252252580430744, −2.43470077497720609517368412384, −1.49264770548250293594637876598, 0, 1.49264770548250293594637876598, 2.43470077497720609517368412384, 3.58569493556401252252580430744, 4.23642977810300404332541306626, 5.08379743035954149505590828294, 5.94728239294354965613847389707, 6.74069179733242319110287892029, 7.33713268528036076349461049532, 8.310080589934033374812375342089

Graph of the $Z$-function along the critical line