L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 0.547·7-s − 8-s + 9-s − 2.03·11-s + 12-s + 1.67·13-s + 0.547·14-s + 16-s − 0.445·17-s − 18-s + 0.0854·19-s − 0.547·21-s + 2.03·22-s + 7.70·23-s − 24-s − 1.67·26-s + 27-s − 0.547·28-s + 1.55·29-s − 7.53·31-s − 32-s − 2.03·33-s + 0.445·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.408·6-s − 0.206·7-s − 0.353·8-s + 0.333·9-s − 0.613·11-s + 0.288·12-s + 0.464·13-s + 0.146·14-s + 0.250·16-s − 0.107·17-s − 0.235·18-s + 0.0196·19-s − 0.119·21-s + 0.434·22-s + 1.60·23-s − 0.204·24-s − 0.328·26-s + 0.192·27-s − 0.103·28-s + 0.289·29-s − 1.35·31-s − 0.176·32-s − 0.354·33-s + 0.0763·34-s + ⋯ |
Λ(s)=(=(3750s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3750s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.597396909 |
L(21) |
≈ |
1.597396909 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−T |
| 5 | 1 |
good | 7 | 1+0.547T+7T2 |
| 11 | 1+2.03T+11T2 |
| 13 | 1−1.67T+13T2 |
| 17 | 1+0.445T+17T2 |
| 19 | 1−0.0854T+19T2 |
| 23 | 1−7.70T+23T2 |
| 29 | 1−1.55T+29T2 |
| 31 | 1+7.53T+31T2 |
| 37 | 1−0.0660T+37T2 |
| 41 | 1−8.80T+41T2 |
| 43 | 1+2.00T+43T2 |
| 47 | 1−7.22T+47T2 |
| 53 | 1−1.98T+53T2 |
| 59 | 1−5.87T+59T2 |
| 61 | 1+12.1T+61T2 |
| 67 | 1−6.58T+67T2 |
| 71 | 1+8.05T+71T2 |
| 73 | 1−10.5T+73T2 |
| 79 | 1−7.37T+79T2 |
| 83 | 1+1.45T+83T2 |
| 89 | 1−9.44T+89T2 |
| 97 | 1−6.58T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.654402911564188064849023467221, −7.78268170716965157721233235542, −7.28255068864731722673691217842, −6.49087490561983024831756652715, −5.61332673687601167498700471768, −4.72213401282573685579241742510, −3.61553395258646265915848371339, −2.88556905671616012570440214887, −1.97866004340215080045084800956, −0.796807578777940509871175178271,
0.796807578777940509871175178271, 1.97866004340215080045084800956, 2.88556905671616012570440214887, 3.61553395258646265915848371339, 4.72213401282573685579241742510, 5.61332673687601167498700471768, 6.49087490561983024831756652715, 7.28255068864731722673691217842, 7.78268170716965157721233235542, 8.654402911564188064849023467221