L(s) = 1 | + 2-s + 3-s + 4-s + 6-s + 0.929·7-s + 8-s + 9-s − 1.29·11-s + 12-s + 0.581·13-s + 0.929·14-s + 16-s + 0.338·17-s + 18-s − 1.27·19-s + 0.929·21-s − 1.29·22-s + 0.403·23-s + 24-s + 0.581·26-s + 27-s + 0.929·28-s + 8.82·29-s + 5.29·31-s + 32-s − 1.29·33-s + 0.338·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.408·6-s + 0.351·7-s + 0.353·8-s + 0.333·9-s − 0.390·11-s + 0.288·12-s + 0.161·13-s + 0.248·14-s + 0.250·16-s + 0.0820·17-s + 0.235·18-s − 0.293·19-s + 0.202·21-s − 0.276·22-s + 0.0841·23-s + 0.204·24-s + 0.114·26-s + 0.192·27-s + 0.175·28-s + 1.63·29-s + 0.950·31-s + 0.176·32-s − 0.225·33-s + 0.0580·34-s + ⋯ |
Λ(s)=(=(3750s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3750s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.080877673 |
L(21) |
≈ |
4.080877673 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 5 | 1 |
good | 7 | 1−0.929T+7T2 |
| 11 | 1+1.29T+11T2 |
| 13 | 1−0.581T+13T2 |
| 17 | 1−0.338T+17T2 |
| 19 | 1+1.27T+19T2 |
| 23 | 1−0.403T+23T2 |
| 29 | 1−8.82T+29T2 |
| 31 | 1−5.29T+31T2 |
| 37 | 1−3.51T+37T2 |
| 41 | 1−3.05T+41T2 |
| 43 | 1−4.16T+43T2 |
| 47 | 1+7.68T+47T2 |
| 53 | 1−11.5T+53T2 |
| 59 | 1−7.83T+59T2 |
| 61 | 1+13.9T+61T2 |
| 67 | 1−7.97T+67T2 |
| 71 | 1−8.54T+71T2 |
| 73 | 1−3.68T+73T2 |
| 79 | 1−14.7T+79T2 |
| 83 | 1−2.45T+83T2 |
| 89 | 1+8.97T+89T2 |
| 97 | 1+18.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.171480466878935991491583689244, −8.015040775045239728259798156620, −6.89471796549311376899027549986, −6.35439666086411747990446097365, −5.36138301624236024092494538186, −4.64881594726560737127305854195, −3.94120912820747692065226998192, −2.94841463796701756914533878385, −2.30711202182688657394638661980, −1.08884274022129004986707438654,
1.08884274022129004986707438654, 2.30711202182688657394638661980, 2.94841463796701756914533878385, 3.94120912820747692065226998192, 4.64881594726560737127305854195, 5.36138301624236024092494538186, 6.35439666086411747990446097365, 6.89471796549311376899027549986, 8.015040775045239728259798156620, 8.171480466878935991491583689244