Properties

Label 2-3750-1.1-c1-0-48
Degree $2$
Conductor $3750$
Sign $-1$
Analytic cond. $29.9439$
Root an. cond. $5.47210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s + 2·7-s − 8-s + 9-s − 5.23·11-s − 12-s − 4.85·13-s − 2·14-s + 16-s + 7.85·17-s − 18-s − 2.76·19-s − 2·21-s + 5.23·22-s + 6·23-s + 24-s + 4.85·26-s − 27-s + 2·28-s − 1.38·29-s + 3.70·31-s − 32-s + 5.23·33-s − 7.85·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s + 0.755·7-s − 0.353·8-s + 0.333·9-s − 1.57·11-s − 0.288·12-s − 1.34·13-s − 0.534·14-s + 0.250·16-s + 1.90·17-s − 0.235·18-s − 0.634·19-s − 0.436·21-s + 1.11·22-s + 1.25·23-s + 0.204·24-s + 0.951·26-s − 0.192·27-s + 0.377·28-s − 0.256·29-s + 0.666·31-s − 0.176·32-s + 0.911·33-s − 1.34·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3750 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3750\)    =    \(2 \cdot 3 \cdot 5^{4}\)
Sign: $-1$
Analytic conductor: \(29.9439\)
Root analytic conductor: \(5.47210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3750,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
good7 \( 1 - 2T + 7T^{2} \)
11 \( 1 + 5.23T + 11T^{2} \)
13 \( 1 + 4.85T + 13T^{2} \)
17 \( 1 - 7.85T + 17T^{2} \)
19 \( 1 + 2.76T + 19T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + 1.38T + 29T^{2} \)
31 \( 1 - 3.70T + 31T^{2} \)
37 \( 1 + 2.14T + 37T^{2} \)
41 \( 1 + 6.09T + 41T^{2} \)
43 \( 1 + 1.23T + 43T^{2} \)
47 \( 1 - 4.76T + 47T^{2} \)
53 \( 1 - 8.56T + 53T^{2} \)
59 \( 1 - 8.94T + 59T^{2} \)
61 \( 1 + 8.85T + 61T^{2} \)
67 \( 1 + 9.70T + 67T^{2} \)
71 \( 1 + 14.1T + 71T^{2} \)
73 \( 1 + 3.14T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 1.38T + 89T^{2} \)
97 \( 1 + 13.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.997055380776331572648735866953, −7.52956833677045865887194948170, −6.95334655871307471255067266908, −5.74751437804703587918797517088, −5.22939497959559114773746464413, −4.61914620406100735710287348611, −3.17617963695677721852284600107, −2.37525957408376665510133714282, −1.23701953300911402566996408412, 0, 1.23701953300911402566996408412, 2.37525957408376665510133714282, 3.17617963695677721852284600107, 4.61914620406100735710287348611, 5.22939497959559114773746464413, 5.74751437804703587918797517088, 6.95334655871307471255067266908, 7.52956833677045865887194948170, 7.997055380776331572648735866953

Graph of the $Z$-function along the critical line