L(s) = 1 | − 2-s − 3-s + 4-s + 6-s + 2·7-s − 8-s + 9-s − 5.23·11-s − 12-s − 4.85·13-s − 2·14-s + 16-s + 7.85·17-s − 18-s − 2.76·19-s − 2·21-s + 5.23·22-s + 6·23-s + 24-s + 4.85·26-s − 27-s + 2·28-s − 1.38·29-s + 3.70·31-s − 32-s + 5.23·33-s − 7.85·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s + 0.755·7-s − 0.353·8-s + 0.333·9-s − 1.57·11-s − 0.288·12-s − 1.34·13-s − 0.534·14-s + 0.250·16-s + 1.90·17-s − 0.235·18-s − 0.634·19-s − 0.436·21-s + 1.11·22-s + 1.25·23-s + 0.204·24-s + 0.951·26-s − 0.192·27-s + 0.377·28-s − 0.256·29-s + 0.666·31-s − 0.176·32-s + 0.911·33-s − 1.34·34-s + ⋯ |
Λ(s)=(=(3750s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3750s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1+T |
| 5 | 1 |
good | 7 | 1−2T+7T2 |
| 11 | 1+5.23T+11T2 |
| 13 | 1+4.85T+13T2 |
| 17 | 1−7.85T+17T2 |
| 19 | 1+2.76T+19T2 |
| 23 | 1−6T+23T2 |
| 29 | 1+1.38T+29T2 |
| 31 | 1−3.70T+31T2 |
| 37 | 1+2.14T+37T2 |
| 41 | 1+6.09T+41T2 |
| 43 | 1+1.23T+43T2 |
| 47 | 1−4.76T+47T2 |
| 53 | 1−8.56T+53T2 |
| 59 | 1−8.94T+59T2 |
| 61 | 1+8.85T+61T2 |
| 67 | 1+9.70T+67T2 |
| 71 | 1+14.1T+71T2 |
| 73 | 1+3.14T+73T2 |
| 79 | 1+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1−1.38T+89T2 |
| 97 | 1+13.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.997055380776331572648735866953, −7.52956833677045865887194948170, −6.95334655871307471255067266908, −5.74751437804703587918797517088, −5.22939497959559114773746464413, −4.61914620406100735710287348611, −3.17617963695677721852284600107, −2.37525957408376665510133714282, −1.23701953300911402566996408412, 0,
1.23701953300911402566996408412, 2.37525957408376665510133714282, 3.17617963695677721852284600107, 4.61914620406100735710287348611, 5.22939497959559114773746464413, 5.74751437804703587918797517088, 6.95334655871307471255067266908, 7.52956833677045865887194948170, 7.997055380776331572648735866953