L(s) = 1 | − 2-s + 4-s + 7-s − 8-s + 5·13-s − 14-s + 16-s − 3·17-s + 2·19-s + 9·23-s − 5·25-s − 5·26-s + 28-s + 3·29-s + 5·31-s − 32-s + 3·34-s + 2·37-s − 2·38-s + 6·41-s − 43-s − 9·46-s + 6·47-s + 49-s + 5·50-s + 5·52-s − 3·53-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 1.38·13-s − 0.267·14-s + 1/4·16-s − 0.727·17-s + 0.458·19-s + 1.87·23-s − 25-s − 0.980·26-s + 0.188·28-s + 0.557·29-s + 0.898·31-s − 0.176·32-s + 0.514·34-s + 0.328·37-s − 0.324·38-s + 0.937·41-s − 0.152·43-s − 1.32·46-s + 0.875·47-s + 1/7·49-s + 0.707·50-s + 0.693·52-s − 0.412·53-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.081892474 |
L(21) |
≈ |
1.081892474 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1−T |
good | 5 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1−5T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1−9T+pT2 |
| 29 | 1−3T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+3T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1+10T+pT2 |
| 67 | 1+13T+pT2 |
| 71 | 1+9T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15664487403838869778857539841, −10.57904738545541172722863200266, −9.358886306281919204370388916695, −8.682143010158560978147219777821, −7.77295226765590417072124632150, −6.72994634489814968752118634163, −5.74408802320171077841105153966, −4.35441080626390222166206464206, −2.89963569250000254763681159752, −1.25841763926025585348683837537,
1.25841763926025585348683837537, 2.89963569250000254763681159752, 4.35441080626390222166206464206, 5.74408802320171077841105153966, 6.72994634489814968752118634163, 7.77295226765590417072124632150, 8.682143010158560978147219777821, 9.358886306281919204370388916695, 10.57904738545541172722863200266, 11.15664487403838869778857539841