Properties

Label 2-378-1.1-c3-0-23
Degree 22
Conductor 378378
Sign 1-1
Analytic cond. 22.302722.3027
Root an. cond. 4.722574.72257
Motivic weight 33
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 5-s − 7·7-s + 8·8-s − 2·10-s − 44·11-s − 66·13-s − 14·14-s + 16·16-s + 7·17-s − 4·19-s − 4·20-s − 88·22-s − 86·23-s − 124·25-s − 132·26-s − 28·28-s + 176·29-s + 162·31-s + 32·32-s + 14·34-s + 7·35-s − 199·37-s − 8·38-s − 8·40-s − 363·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.0894·5-s − 0.377·7-s + 0.353·8-s − 0.0632·10-s − 1.20·11-s − 1.40·13-s − 0.267·14-s + 1/4·16-s + 0.0998·17-s − 0.0482·19-s − 0.0447·20-s − 0.852·22-s − 0.779·23-s − 0.991·25-s − 0.995·26-s − 0.188·28-s + 1.12·29-s + 0.938·31-s + 0.176·32-s + 0.0706·34-s + 0.0338·35-s − 0.884·37-s − 0.0341·38-s − 0.0316·40-s − 1.38·41-s + ⋯

Functional equation

Λ(s)=(378s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}
Λ(s)=(378s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 378378    =    23372 \cdot 3^{3} \cdot 7
Sign: 1-1
Analytic conductor: 22.302722.3027
Root analytic conductor: 4.722574.72257
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 378, ( :3/2), 1)(2,\ 378,\ (\ :3/2),\ -1)

Particular Values

L(2)L(2) == 00
L(12)L(\frac12) == 00
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1pT 1 - p T
3 1 1
7 1+pT 1 + p T
good5 1+T+p3T2 1 + T + p^{3} T^{2}
11 1+4pT+p3T2 1 + 4 p T + p^{3} T^{2}
13 1+66T+p3T2 1 + 66 T + p^{3} T^{2}
17 17T+p3T2 1 - 7 T + p^{3} T^{2}
19 1+4T+p3T2 1 + 4 T + p^{3} T^{2}
23 1+86T+p3T2 1 + 86 T + p^{3} T^{2}
29 1176T+p3T2 1 - 176 T + p^{3} T^{2}
31 1162T+p3T2 1 - 162 T + p^{3} T^{2}
37 1+199T+p3T2 1 + 199 T + p^{3} T^{2}
41 1+363T+p3T2 1 + 363 T + p^{3} T^{2}
43 1+451T+p3T2 1 + 451 T + p^{3} T^{2}
47 1+9T+p3T2 1 + 9 T + p^{3} T^{2}
53 1174T+p3T2 1 - 174 T + p^{3} T^{2}
59 1587T+p3T2 1 - 587 T + p^{3} T^{2}
61 1+156T+p3T2 1 + 156 T + p^{3} T^{2}
67 1+560T+p3T2 1 + 560 T + p^{3} T^{2}
71 1532T+p3T2 1 - 532 T + p^{3} T^{2}
73 1+854T+p3T2 1 + 854 T + p^{3} T^{2}
79 1+747T+p3T2 1 + 747 T + p^{3} T^{2}
83 1613T+p3T2 1 - 613 T + p^{3} T^{2}
89 11266T+p3T2 1 - 1266 T + p^{3} T^{2}
97 164T+p3T2 1 - 64 T + p^{3} T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.23677984500293183533114670694, −10.03994203957005431655279488341, −8.424840857378496257062933730007, −7.54499149009914095497051933969, −6.58330080133230272089972300953, −5.42067900124197916807199429620, −4.61036234759476726222351505967, −3.23193986859729957688471669650, −2.18576070674810562258650827080, 0, 2.18576070674810562258650827080, 3.23193986859729957688471669650, 4.61036234759476726222351505967, 5.42067900124197916807199429620, 6.58330080133230272089972300953, 7.54499149009914095497051933969, 8.424840857378496257062933730007, 10.03994203957005431655279488341, 10.23677984500293183533114670694

Graph of the ZZ-function along the critical line