L(s) = 1 | + (−0.342 + 0.939i)2-s + (0.0584 − 1.73i)3-s + (−0.766 − 0.642i)4-s + (−0.439 + 2.49i)5-s + (1.60 + 0.646i)6-s + (0.411 − 2.61i)7-s + (0.866 − 0.500i)8-s + (−2.99 − 0.202i)9-s + (−2.19 − 1.26i)10-s + (5.67 − 1.00i)11-s + (−1.15 + 1.28i)12-s + (−0.939 − 2.58i)13-s + (2.31 + 1.28i)14-s + (4.28 + 0.906i)15-s + (0.173 + 0.984i)16-s + (1.32 − 2.29i)17-s + ⋯ |
L(s) = 1 | + (−0.241 + 0.664i)2-s + (0.0337 − 0.999i)3-s + (−0.383 − 0.321i)4-s + (−0.196 + 1.11i)5-s + (0.655 + 0.264i)6-s + (0.155 − 0.987i)7-s + (0.306 − 0.176i)8-s + (−0.997 − 0.0674i)9-s + (−0.693 − 0.400i)10-s + (1.71 − 0.301i)11-s + (−0.334 + 0.371i)12-s + (−0.260 − 0.715i)13-s + (0.618 + 0.342i)14-s + (1.10 + 0.234i)15-s + (0.0434 + 0.246i)16-s + (0.320 − 0.555i)17-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.853+0.521i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.853+0.521i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.853+0.521i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(293,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.853+0.521i)
|
Particular Values
L(1) |
≈ |
1.11381−0.313270i |
L(21) |
≈ |
1.11381−0.313270i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.342−0.939i)T |
| 3 | 1+(−0.0584+1.73i)T |
| 7 | 1+(−0.411+2.61i)T |
good | 5 | 1+(0.439−2.49i)T+(−4.69−1.71i)T2 |
| 11 | 1+(−5.67+1.00i)T+(10.3−3.76i)T2 |
| 13 | 1+(0.939+2.58i)T+(−9.95+8.35i)T2 |
| 17 | 1+(−1.32+2.29i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.0684−0.0395i)T+(9.5−16.4i)T2 |
| 23 | 1+(−0.0439+0.0524i)T+(−3.99−22.6i)T2 |
| 29 | 1+(−3.25+8.94i)T+(−22.2−18.6i)T2 |
| 31 | 1+(−6.33+7.55i)T+(−5.38−30.5i)T2 |
| 37 | 1+(2.36−4.08i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−2.92+1.06i)T+(31.4−26.3i)T2 |
| 43 | 1+(−0.166−0.944i)T+(−40.4+14.7i)T2 |
| 47 | 1+(5.94−4.98i)T+(8.16−46.2i)T2 |
| 53 | 1−11.8iT−53T2 |
| 59 | 1+(1.48−8.42i)T+(−55.4−20.1i)T2 |
| 61 | 1+(1.31+1.57i)T+(−10.5+60.0i)T2 |
| 67 | 1+(0.412−0.150i)T+(51.3−43.0i)T2 |
| 71 | 1+(6.39+3.69i)T+(35.5+61.4i)T2 |
| 73 | 1+(7.57−4.37i)T+(36.5−63.2i)T2 |
| 79 | 1+(1.93+0.705i)T+(60.5+50.7i)T2 |
| 83 | 1+(−4.09−1.49i)T+(63.5+53.3i)T2 |
| 89 | 1+(−8.31−14.4i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.68−1.00i)T+(91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.37815332544280480957583097081, −10.35721012397476659212783942784, −9.364728106490847286470313899677, −8.069875050607039527036532093167, −7.47219702379095233051936466129, −6.62310462775174033904720884785, −6.05504232408160498740438388215, −4.27030702373740102941158053143, −2.93810148645942692730068145126, −0.968472694167237133551123087728,
1.61170324443451594516637282995, 3.36046830105826253222213362033, 4.46454359907457573321090403826, 5.16142369760757327318067494574, 6.56994854635155305544233061274, 8.420130359087124581151691278985, 8.871718741222762696345535118052, 9.438606639767289394263081903738, 10.44517567636474008645574404691, 11.69345039281596206440778613324