L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s − 1.58·5-s + (−2.64 + 0.0963i)7-s + 0.999·8-s + (0.794 + 1.37i)10-s + 1.58·11-s + (2.40 + 4.16i)13-s + (1.40 + 2.24i)14-s + (−0.5 − 0.866i)16-s + (2.69 + 4.67i)17-s + (−3.54 + 6.14i)19-s + (0.794 − 1.37i)20-s + (−0.794 − 1.37i)22-s − 0.300·23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s − 0.710·5-s + (−0.999 + 0.0364i)7-s + 0.353·8-s + (0.251 + 0.434i)10-s + 0.478·11-s + (0.667 + 1.15i)13-s + (0.375 + 0.599i)14-s + (−0.125 − 0.216i)16-s + (0.654 + 1.13i)17-s + (−0.814 + 1.41i)19-s + (0.177 − 0.307i)20-s + (−0.169 − 0.293i)22-s − 0.0626·23-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.384−0.923i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.384−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.384−0.923i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.384−0.923i)
|
Particular Values
L(1) |
≈ |
0.519194+0.346064i |
L(21) |
≈ |
0.519194+0.346064i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1 |
| 7 | 1+(2.64−0.0963i)T |
good | 5 | 1+1.58T+5T2 |
| 11 | 1−1.58T+11T2 |
| 13 | 1+(−2.40−4.16i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−2.69−4.67i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.54−6.14i)T+(−9.5−16.4i)T2 |
| 23 | 1+0.300T+23T2 |
| 29 | 1+(4.13−7.16i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−1.35+2.34i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.5+0.866i)T+(−18.5−32.0i)T2 |
| 41 | 1+(2.93+5.08i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.833−1.44i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.33−2.30i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2.44+4.23i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−3.23+5.60i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.23−3.87i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.02+8.70i)T+(−33.5−58.0i)T2 |
| 71 | 1+12.7T+71T2 |
| 73 | 1+(−8.02−13.9i)T+(−36.5+63.2i)T2 |
| 79 | 1+(4.19+7.26i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.18−2.04i)T+(−41.5−71.8i)T2 |
| 89 | 1+(1.60−2.78i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−0.712+1.23i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54317444974217256483310657108, −10.61904579019137042977631485427, −9.769661439535378098621529712381, −8.847915687339621451727062839948, −8.040453910574620024323675229422, −6.84660254686393453745340411892, −5.89381929066827786350808604127, −3.99317401508695538031094859079, −3.60050624706311344299279063644, −1.72543276160858166446234379667,
0.47917294819184509109412475082, 2.99197892063502348043752662188, 4.19174952634560981867959741388, 5.55940084735348107065927736712, 6.55167411460536584485989717777, 7.42667138031756938272507302555, 8.338357570662908724774989279574, 9.297056691059508565107549911203, 10.08938640986445483370144474859, 11.14733736667289451866259235613