Properties

Label 2-378-63.16-c1-0-1
Degree 22
Conductor 378378
Sign 0.3840.923i0.384 - 0.923i
Analytic cond. 3.018343.01834
Root an. cond. 1.737331.73733
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s − 1.58·5-s + (−2.64 + 0.0963i)7-s + 0.999·8-s + (0.794 + 1.37i)10-s + 1.58·11-s + (2.40 + 4.16i)13-s + (1.40 + 2.24i)14-s + (−0.5 − 0.866i)16-s + (2.69 + 4.67i)17-s + (−3.54 + 6.14i)19-s + (0.794 − 1.37i)20-s + (−0.794 − 1.37i)22-s − 0.300·23-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s − 0.710·5-s + (−0.999 + 0.0364i)7-s + 0.353·8-s + (0.251 + 0.434i)10-s + 0.478·11-s + (0.667 + 1.15i)13-s + (0.375 + 0.599i)14-s + (−0.125 − 0.216i)16-s + (0.654 + 1.13i)17-s + (−0.814 + 1.41i)19-s + (0.177 − 0.307i)20-s + (−0.169 − 0.293i)22-s − 0.0626·23-s + ⋯

Functional equation

Λ(s)=(378s/2ΓC(s)L(s)=((0.3840.923i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.384 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(378s/2ΓC(s+1/2)L(s)=((0.3840.923i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.384 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 378378    =    23372 \cdot 3^{3} \cdot 7
Sign: 0.3840.923i0.384 - 0.923i
Analytic conductor: 3.018343.01834
Root analytic conductor: 1.737331.73733
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ378(289,)\chi_{378} (289, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 378, ( :1/2), 0.3840.923i)(2,\ 378,\ (\ :1/2),\ 0.384 - 0.923i)

Particular Values

L(1)L(1) \approx 0.519194+0.346064i0.519194 + 0.346064i
L(12)L(\frac12) \approx 0.519194+0.346064i0.519194 + 0.346064i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (0.5 + 0.866i)T
3 1 1
7 1+(2.640.0963i)T 1 + (2.64 - 0.0963i)T
good5 1+1.58T+5T2 1 + 1.58T + 5T^{2}
11 11.58T+11T2 1 - 1.58T + 11T^{2}
13 1+(2.404.16i)T+(6.5+11.2i)T2 1 + (-2.40 - 4.16i)T + (-6.5 + 11.2i)T^{2}
17 1+(2.694.67i)T+(8.5+14.7i)T2 1 + (-2.69 - 4.67i)T + (-8.5 + 14.7i)T^{2}
19 1+(3.546.14i)T+(9.516.4i)T2 1 + (3.54 - 6.14i)T + (-9.5 - 16.4i)T^{2}
23 1+0.300T+23T2 1 + 0.300T + 23T^{2}
29 1+(4.137.16i)T+(14.525.1i)T2 1 + (4.13 - 7.16i)T + (-14.5 - 25.1i)T^{2}
31 1+(1.35+2.34i)T+(15.526.8i)T2 1 + (-1.35 + 2.34i)T + (-15.5 - 26.8i)T^{2}
37 1+(0.5+0.866i)T+(18.532.0i)T2 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2}
41 1+(2.93+5.08i)T+(20.5+35.5i)T2 1 + (2.93 + 5.08i)T + (-20.5 + 35.5i)T^{2}
43 1+(0.8331.44i)T+(21.537.2i)T2 1 + (0.833 - 1.44i)T + (-21.5 - 37.2i)T^{2}
47 1+(1.332.30i)T+(23.5+40.7i)T2 1 + (-1.33 - 2.30i)T + (-23.5 + 40.7i)T^{2}
53 1+(2.44+4.23i)T+(26.5+45.8i)T2 1 + (2.44 + 4.23i)T + (-26.5 + 45.8i)T^{2}
59 1+(3.23+5.60i)T+(29.551.0i)T2 1 + (-3.23 + 5.60i)T + (-29.5 - 51.0i)T^{2}
61 1+(2.233.87i)T+(30.5+52.8i)T2 1 + (-2.23 - 3.87i)T + (-30.5 + 52.8i)T^{2}
67 1+(5.02+8.70i)T+(33.558.0i)T2 1 + (-5.02 + 8.70i)T + (-33.5 - 58.0i)T^{2}
71 1+12.7T+71T2 1 + 12.7T + 71T^{2}
73 1+(8.0213.9i)T+(36.5+63.2i)T2 1 + (-8.02 - 13.9i)T + (-36.5 + 63.2i)T^{2}
79 1+(4.19+7.26i)T+(39.5+68.4i)T2 1 + (4.19 + 7.26i)T + (-39.5 + 68.4i)T^{2}
83 1+(1.182.04i)T+(41.571.8i)T2 1 + (1.18 - 2.04i)T + (-41.5 - 71.8i)T^{2}
89 1+(1.602.78i)T+(44.577.0i)T2 1 + (1.60 - 2.78i)T + (-44.5 - 77.0i)T^{2}
97 1+(0.712+1.23i)T+(48.584.0i)T2 1 + (-0.712 + 1.23i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.54317444974217256483310657108, −10.61904579019137042977631485427, −9.769661439535378098621529712381, −8.847915687339621451727062839948, −8.040453910574620024323675229422, −6.84660254686393453745340411892, −5.89381929066827786350808604127, −3.99317401508695538031094859079, −3.60050624706311344299279063644, −1.72543276160858166446234379667, 0.47917294819184509109412475082, 2.99197892063502348043752662188, 4.19174952634560981867959741388, 5.55940084735348107065927736712, 6.55167411460536584485989717777, 7.42667138031756938272507302555, 8.338357570662908724774989279574, 9.297056691059508565107549911203, 10.08938640986445483370144474859, 11.14733736667289451866259235613

Graph of the ZZ-function along the critical line