L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s − 1.58·5-s + (−2.64 + 0.0963i)7-s + 0.999·8-s + (0.794 + 1.37i)10-s + 1.58·11-s + (2.40 + 4.16i)13-s + (1.40 + 2.24i)14-s + (−0.5 − 0.866i)16-s + (2.69 + 4.67i)17-s + (−3.54 + 6.14i)19-s + (0.794 − 1.37i)20-s + (−0.794 − 1.37i)22-s − 0.300·23-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s − 0.710·5-s + (−0.999 + 0.0364i)7-s + 0.353·8-s + (0.251 + 0.434i)10-s + 0.478·11-s + (0.667 + 1.15i)13-s + (0.375 + 0.599i)14-s + (−0.125 − 0.216i)16-s + (0.654 + 1.13i)17-s + (−0.814 + 1.41i)19-s + (0.177 − 0.307i)20-s + (−0.169 − 0.293i)22-s − 0.0626·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.384 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.384 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.519194 + 0.346064i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.519194 + 0.346064i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.64 - 0.0963i)T \) |
good | 5 | \( 1 + 1.58T + 5T^{2} \) |
| 11 | \( 1 - 1.58T + 11T^{2} \) |
| 13 | \( 1 + (-2.40 - 4.16i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.69 - 4.67i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.54 - 6.14i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 0.300T + 23T^{2} \) |
| 29 | \( 1 + (4.13 - 7.16i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.35 + 2.34i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.93 + 5.08i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.833 - 1.44i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.33 - 2.30i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.44 + 4.23i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.23 + 5.60i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.23 - 3.87i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.02 + 8.70i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.7T + 71T^{2} \) |
| 73 | \( 1 + (-8.02 - 13.9i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.19 + 7.26i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.18 - 2.04i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (1.60 - 2.78i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.712 + 1.23i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54317444974217256483310657108, −10.61904579019137042977631485427, −9.769661439535378098621529712381, −8.847915687339621451727062839948, −8.040453910574620024323675229422, −6.84660254686393453745340411892, −5.89381929066827786350808604127, −3.99317401508695538031094859079, −3.60050624706311344299279063644, −1.72543276160858166446234379667,
0.47917294819184509109412475082, 2.99197892063502348043752662188, 4.19174952634560981867959741388, 5.55940084735348107065927736712, 6.55167411460536584485989717777, 7.42667138031756938272507302555, 8.338357570662908724774989279574, 9.297056691059508565107549911203, 10.08938640986445483370144474859, 11.14733736667289451866259235613