L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + 0.460·5-s + (2.25 + 1.38i)7-s − 0.999·8-s + (0.230 − 0.398i)10-s + 3.64·11-s + (0.730 − 1.26i)13-s + (2.32 − 1.26i)14-s + (−0.5 + 0.866i)16-s + (1.86 − 3.23i)17-s + (−2.02 − 3.51i)19-s + (−0.230 − 0.398i)20-s + (1.82 − 3.15i)22-s − 1.13·23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + 0.205·5-s + (0.853 + 0.521i)7-s − 0.353·8-s + (0.0728 − 0.126i)10-s + 1.09·11-s + (0.202 − 0.350i)13-s + (0.621 − 0.338i)14-s + (−0.125 + 0.216i)16-s + (0.452 − 0.784i)17-s + (−0.465 − 0.805i)19-s + (−0.0514 − 0.0891i)20-s + (0.388 − 0.673i)22-s − 0.236·23-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.609+0.792i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.609+0.792i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.609+0.792i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.609+0.792i)
|
Particular Values
L(1) |
≈ |
1.62452−0.800440i |
L(21) |
≈ |
1.62452−0.800440i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1 |
| 7 | 1+(−2.25−1.38i)T |
good | 5 | 1−0.460T+5T2 |
| 11 | 1−3.64T+11T2 |
| 13 | 1+(−0.730+1.26i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−1.86+3.23i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.02+3.51i)T+(−9.5+16.4i)T2 |
| 23 | 1+1.13T+23T2 |
| 29 | 1+(−4.48−7.77i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−0.257−0.445i)T+(−15.5+26.8i)T2 |
| 37 | 1+(4.55+7.88i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−0.472+0.819i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−4.66−8.07i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.16+2.01i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6.21−10.7i)T+(−26.5−45.8i)T2 |
| 59 | 1+(6.44+11.1i)T+(−29.5+51.0i)T2 |
| 61 | 1+(6.04−10.4i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.16−2.00i)T+(−33.5+58.0i)T2 |
| 71 | 1+1.67T+71T2 |
| 73 | 1+(6.62−11.4i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.50+4.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.32+5.75i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−1.36−2.36i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.59+9.68i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32686969203929651868753031976, −10.54093751102804657654714834640, −9.349615211432034329660144714393, −8.755671667260364153794665974574, −7.48967446443218884831093625773, −6.22491978968691802364842332566, −5.22398128177574661142213873457, −4.21794801333404956715514154573, −2.83295473732128217190212672836, −1.44616186125906097032326609181,
1.69182270299532967628053410314, 3.74481133506278839689758415473, 4.50045599671527860788932802720, 5.85594484002507451364554872461, 6.60231345405632272593502687381, 7.81403251583164097095617833192, 8.444779936390306220077431060094, 9.623116016839618038712585132029, 10.57048824813704249887219649070, 11.71298199121324714001234439539