L(s) = 1 | + (2 − 3.46i)2-s + (−2.72 + 4.72i)3-s + (−7.99 − 13.8i)4-s + (−41.7 + 72.3i)5-s + (10.9 + 18.8i)6-s − 105.·7-s − 63.9·8-s + (106. + 184. i)9-s + (166. + 289. i)10-s − 245.·11-s + 87.2·12-s + (95.4 + 165. i)13-s + (−211. + 366. i)14-s + (−227. − 394. i)15-s + (−128 + 221. i)16-s + (44.7 − 77.4i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.174 + 0.302i)3-s + (−0.249 − 0.433i)4-s + (−0.746 + 1.29i)5-s + (0.123 + 0.214i)6-s − 0.816·7-s − 0.353·8-s + (0.438 + 0.760i)9-s + (0.528 + 0.914i)10-s − 0.611·11-s + 0.174·12-s + (0.156 + 0.271i)13-s + (−0.288 + 0.499i)14-s + (−0.261 − 0.452i)15-s + (−0.125 + 0.216i)16-s + (0.0375 − 0.0650i)17-s + ⋯ |
Λ(s)=(=(38s/2ΓC(s)L(s)(−0.278−0.960i)Λ(6−s)
Λ(s)=(=(38s/2ΓC(s+5/2)L(s)(−0.278−0.960i)Λ(1−s)
Degree: |
2 |
Conductor: |
38
= 2⋅19
|
Sign: |
−0.278−0.960i
|
Analytic conductor: |
6.09458 |
Root analytic conductor: |
2.46872 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ38(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 38, ( :5/2), −0.278−0.960i)
|
Particular Values
L(3) |
≈ |
0.514591+0.685092i |
L(21) |
≈ |
0.514591+0.685092i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2+3.46i)T |
| 19 | 1+(−109.−1.56e3i)T |
good | 3 | 1+(2.72−4.72i)T+(−121.5−210.i)T2 |
| 5 | 1+(41.7−72.3i)T+(−1.56e3−2.70e3i)T2 |
| 7 | 1+105.T+1.68e4T2 |
| 11 | 1+245.T+1.61e5T2 |
| 13 | 1+(−95.4−165.i)T+(−1.85e5+3.21e5i)T2 |
| 17 | 1+(−44.7+77.4i)T+(−7.09e5−1.22e6i)T2 |
| 23 | 1+(1.91e3+3.31e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+(1.05e3+1.82e3i)T+(−1.02e7+1.77e7i)T2 |
| 31 | 1−4.69e3T+2.86e7T2 |
| 37 | 1−7.99e3T+6.93e7T2 |
| 41 | 1+(1.03e4−1.79e4i)T+(−5.79e7−1.00e8i)T2 |
| 43 | 1+(−1.10e3+1.91e3i)T+(−7.35e7−1.27e8i)T2 |
| 47 | 1+(−1.00e4−1.74e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−1.90e4−3.30e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(−2.22e3+3.86e3i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−1.34e4−2.33e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(−2.90e3−5.02e3i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+(2.52e3−4.37e3i)T+(−9.02e8−1.56e9i)T2 |
| 73 | 1+(−1.82e4+3.16e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−4.51e4+7.81e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1+9.79e4T+3.93e9T2 |
| 89 | 1+(2.34e4+4.05e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+(−8.08e3+1.40e4i)T+(−4.29e9−7.43e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.55392161830492627857536596584, −14.42944090768874541255930374148, −13.20317562364886201786784125890, −11.87520501570984544181712609710, −10.68016355376099793068686353581, −10.00817851231574449733072063070, −7.81912026798950291954271029097, −6.27071276433167413059976697433, −4.22263824758429067801024711672, −2.75566889986901798942090679571,
0.44111127808638808496798053669, 3.81236536584864477489035446405, 5.39321988448181505915729968697, 6.99341878588908051240404940588, 8.340200419048235469688924656322, 9.615236703134677380097957738324, 11.78275971777423213504606478998, 12.72384648293756968365428463521, 13.43243030392477721651837419372, 15.43814787620242112029514372498