L(s) = 1 | + (3.06 + 2.57i)2-s + (−24.7 + 9.01i)3-s + (2.77 + 15.7i)4-s + (14.6 − 83.2i)5-s + (−99.1 − 36.0i)6-s + (−7.63 − 13.2i)7-s + (−32.0 + 55.4i)8-s + (346. − 290. i)9-s + (258. − 217. i)10-s + (225. − 390. i)11-s + (−210. − 365. i)12-s + (−754. − 274. i)13-s + (10.5 − 60.1i)14-s + (386. + 2.19e3i)15-s + (−240. + 87.5i)16-s + (−1.01e3 − 855. i)17-s + ⋯ |
L(s) = 1 | + (0.541 + 0.454i)2-s + (−1.58 + 0.578i)3-s + (0.0868 + 0.492i)4-s + (0.262 − 1.48i)5-s + (−1.12 − 0.409i)6-s + (−0.0588 − 0.101i)7-s + (−0.176 + 0.306i)8-s + (1.42 − 1.19i)9-s + (0.819 − 0.687i)10-s + (0.561 − 0.971i)11-s + (−0.422 − 0.732i)12-s + (−1.23 − 0.450i)13-s + (0.0144 − 0.0819i)14-s + (0.444 + 2.51i)15-s + (−0.234 + 0.0855i)16-s + (−0.855 − 0.717i)17-s + ⋯ |
Λ(s)=(=(38s/2ΓC(s)L(s)(0.136+0.990i)Λ(6−s)
Λ(s)=(=(38s/2ΓC(s+5/2)L(s)(0.136+0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
38
= 2⋅19
|
Sign: |
0.136+0.990i
|
Analytic conductor: |
6.09458 |
Root analytic conductor: |
2.46872 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ38(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 38, ( :5/2), 0.136+0.990i)
|
Particular Values
L(3) |
≈ |
0.588287−0.512851i |
L(21) |
≈ |
0.588287−0.512851i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−3.06−2.57i)T |
| 19 | 1+(1.50e3−459.i)T |
good | 3 | 1+(24.7−9.01i)T+(186.−156.i)T2 |
| 5 | 1+(−14.6+83.2i)T+(−2.93e3−1.06e3i)T2 |
| 7 | 1+(7.63+13.2i)T+(−8.40e3+1.45e4i)T2 |
| 11 | 1+(−225.+390.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+(754.+274.i)T+(2.84e5+2.38e5i)T2 |
| 17 | 1+(1.01e3+855.i)T+(2.46e5+1.39e6i)T2 |
| 23 | 1+(−65.9−373.i)T+(−6.04e6+2.20e6i)T2 |
| 29 | 1+(−6.38e3+5.35e3i)T+(3.56e6−2.01e7i)T2 |
| 31 | 1+(−3.34e3−5.79e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+4.85e3T+6.93e7T2 |
| 41 | 1+(1.18e4−4.30e3i)T+(8.87e7−7.44e7i)T2 |
| 43 | 1+(−2.55e3+1.45e4i)T+(−1.38e8−5.02e7i)T2 |
| 47 | 1+(9.45e3−7.92e3i)T+(3.98e7−2.25e8i)T2 |
| 53 | 1+(−286.−1.62e3i)T+(−3.92e8+1.43e8i)T2 |
| 59 | 1+(−4.24e3−3.55e3i)T+(1.24e8+7.04e8i)T2 |
| 61 | 1+(−5.83e3−3.31e4i)T+(−7.93e8+2.88e8i)T2 |
| 67 | 1+(−824.+691.i)T+(2.34e8−1.32e9i)T2 |
| 71 | 1+(−4.28e3+2.42e4i)T+(−1.69e9−6.17e8i)T2 |
| 73 | 1+(−4.67e4+1.70e4i)T+(1.58e9−1.33e9i)T2 |
| 79 | 1+(2.89e4−1.05e4i)T+(2.35e9−1.97e9i)T2 |
| 83 | 1+(1.88e4+3.25e4i)T+(−1.96e9+3.41e9i)T2 |
| 89 | 1+(−8.71e4−3.17e4i)T+(4.27e9+3.58e9i)T2 |
| 97 | 1+(8.78e4+7.37e4i)T+(1.49e9+8.45e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.45722533613168473495995629542, −13.65976167669869281400378221855, −12.40804618436842582355030304218, −11.72784761793478615161570717778, −10.17150156461963839842113773090, −8.672560494218737899361745267430, −6.51648878261310160418284438603, −5.28475417705690817684029230914, −4.48476188896600499318283939100, −0.44145639808686111498609112641,
2.13646882255354498416696226385, 4.67826582885240886180305684776, 6.44240924159415283368875183907, 6.89976819340604751811454783918, 10.04286037450898769593208720836, 10.90944112396902150549610708413, 11.90535475653944478446556014140, 12.80340514078238823927251138414, 14.33448749049354330896140947097, 15.31759380163255995715695640221