L(s) = 1 | + (3.06 + 2.57i)2-s + (−24.7 + 9.01i)3-s + (2.77 + 15.7i)4-s + (14.6 − 83.2i)5-s + (−99.1 − 36.0i)6-s + (−7.63 − 13.2i)7-s + (−32.0 + 55.4i)8-s + (346. − 290. i)9-s + (258. − 217. i)10-s + (225. − 390. i)11-s + (−210. − 365. i)12-s + (−754. − 274. i)13-s + (10.5 − 60.1i)14-s + (386. + 2.19e3i)15-s + (−240. + 87.5i)16-s + (−1.01e3 − 855. i)17-s + ⋯ |
L(s) = 1 | + (0.541 + 0.454i)2-s + (−1.58 + 0.578i)3-s + (0.0868 + 0.492i)4-s + (0.262 − 1.48i)5-s + (−1.12 − 0.409i)6-s + (−0.0588 − 0.101i)7-s + (−0.176 + 0.306i)8-s + (1.42 − 1.19i)9-s + (0.819 − 0.687i)10-s + (0.561 − 0.971i)11-s + (−0.422 − 0.732i)12-s + (−1.23 − 0.450i)13-s + (0.0144 − 0.0819i)14-s + (0.444 + 2.51i)15-s + (−0.234 + 0.0855i)16-s + (−0.855 − 0.717i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.136 + 0.990i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.136 + 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.588287 - 0.512851i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.588287 - 0.512851i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-3.06 - 2.57i)T \) |
| 19 | \( 1 + (1.50e3 - 459. i)T \) |
good | 3 | \( 1 + (24.7 - 9.01i)T + (186. - 156. i)T^{2} \) |
| 5 | \( 1 + (-14.6 + 83.2i)T + (-2.93e3 - 1.06e3i)T^{2} \) |
| 7 | \( 1 + (7.63 + 13.2i)T + (-8.40e3 + 1.45e4i)T^{2} \) |
| 11 | \( 1 + (-225. + 390. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + (754. + 274. i)T + (2.84e5 + 2.38e5i)T^{2} \) |
| 17 | \( 1 + (1.01e3 + 855. i)T + (2.46e5 + 1.39e6i)T^{2} \) |
| 23 | \( 1 + (-65.9 - 373. i)T + (-6.04e6 + 2.20e6i)T^{2} \) |
| 29 | \( 1 + (-6.38e3 + 5.35e3i)T + (3.56e6 - 2.01e7i)T^{2} \) |
| 31 | \( 1 + (-3.34e3 - 5.79e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + 4.85e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + (1.18e4 - 4.30e3i)T + (8.87e7 - 7.44e7i)T^{2} \) |
| 43 | \( 1 + (-2.55e3 + 1.45e4i)T + (-1.38e8 - 5.02e7i)T^{2} \) |
| 47 | \( 1 + (9.45e3 - 7.92e3i)T + (3.98e7 - 2.25e8i)T^{2} \) |
| 53 | \( 1 + (-286. - 1.62e3i)T + (-3.92e8 + 1.43e8i)T^{2} \) |
| 59 | \( 1 + (-4.24e3 - 3.55e3i)T + (1.24e8 + 7.04e8i)T^{2} \) |
| 61 | \( 1 + (-5.83e3 - 3.31e4i)T + (-7.93e8 + 2.88e8i)T^{2} \) |
| 67 | \( 1 + (-824. + 691. i)T + (2.34e8 - 1.32e9i)T^{2} \) |
| 71 | \( 1 + (-4.28e3 + 2.42e4i)T + (-1.69e9 - 6.17e8i)T^{2} \) |
| 73 | \( 1 + (-4.67e4 + 1.70e4i)T + (1.58e9 - 1.33e9i)T^{2} \) |
| 79 | \( 1 + (2.89e4 - 1.05e4i)T + (2.35e9 - 1.97e9i)T^{2} \) |
| 83 | \( 1 + (1.88e4 + 3.25e4i)T + (-1.96e9 + 3.41e9i)T^{2} \) |
| 89 | \( 1 + (-8.71e4 - 3.17e4i)T + (4.27e9 + 3.58e9i)T^{2} \) |
| 97 | \( 1 + (8.78e4 + 7.37e4i)T + (1.49e9 + 8.45e9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.45722533613168473495995629542, −13.65976167669869281400378221855, −12.40804618436842582355030304218, −11.72784761793478615161570717778, −10.17150156461963839842113773090, −8.672560494218737899361745267430, −6.51648878261310160418284438603, −5.28475417705690817684029230914, −4.48476188896600499318283939100, −0.44145639808686111498609112641,
2.13646882255354498416696226385, 4.67826582885240886180305684776, 6.44240924159415283368875183907, 6.89976819340604751811454783918, 10.04286037450898769593208720836, 10.90944112396902150549610708413, 11.90535475653944478446556014140, 12.80340514078238823927251138414, 14.33448749049354330896140947097, 15.31759380163255995715695640221