L(s) = 1 | + (0.694 − 3.93i)2-s + (−8.20 − 6.88i)3-s + (−15.0 − 5.47i)4-s + (−55.8 + 20.3i)5-s + (−32.8 + 27.5i)6-s + (115. + 199. i)7-s + (−32 + 55.4i)8-s + (−22.2 − 126. i)9-s + (41.2 + 234. i)10-s + (28.7 − 49.7i)11-s + (85.6 + 148. i)12-s + (−825. + 692. i)13-s + (866. − 315. i)14-s + (597. + 217. i)15-s + (196. + 164. i)16-s + (−149. + 850. i)17-s + ⋯ |
L(s) = 1 | + (0.122 − 0.696i)2-s + (−0.526 − 0.441i)3-s + (−0.469 − 0.171i)4-s + (−0.998 + 0.363i)5-s + (−0.372 + 0.312i)6-s + (0.888 + 1.53i)7-s + (−0.176 + 0.306i)8-s + (−0.0916 − 0.519i)9-s + (0.130 + 0.740i)10-s + (0.0716 − 0.124i)11-s + (0.171 + 0.297i)12-s + (−1.35 + 1.13i)13-s + (1.18 − 0.429i)14-s + (0.686 + 0.249i)15-s + (0.191 + 0.160i)16-s + (−0.125 + 0.713i)17-s + ⋯ |
Λ(s)=(=(38s/2ΓC(s)L(s)(−0.0930−0.995i)Λ(6−s)
Λ(s)=(=(38s/2ΓC(s+5/2)L(s)(−0.0930−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
38
= 2⋅19
|
Sign: |
−0.0930−0.995i
|
Analytic conductor: |
6.09458 |
Root analytic conductor: |
2.46872 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ38(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 38, ( :5/2), −0.0930−0.995i)
|
Particular Values
L(3) |
≈ |
0.266575+0.292659i |
L(21) |
≈ |
0.266575+0.292659i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.694+3.93i)T |
| 19 | 1+(1.44e3+633.i)T |
good | 3 | 1+(8.20+6.88i)T+(42.1+239.i)T2 |
| 5 | 1+(55.8−20.3i)T+(2.39e3−2.00e3i)T2 |
| 7 | 1+(−115.−199.i)T+(−8.40e3+1.45e4i)T2 |
| 11 | 1+(−28.7+49.7i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+(825.−692.i)T+(6.44e4−3.65e5i)T2 |
| 17 | 1+(149.−850.i)T+(−1.33e6−4.85e5i)T2 |
| 23 | 1+(1.49e3+544.i)T+(4.93e6+4.13e6i)T2 |
| 29 | 1+(1.25e3+7.12e3i)T+(−1.92e7+7.01e6i)T2 |
| 31 | 1+(601.+1.04e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1−1.44e4T+6.93e7T2 |
| 41 | 1+(−1.12e4−9.42e3i)T+(2.01e7+1.14e8i)T2 |
| 43 | 1+(1.63e4−5.93e3i)T+(1.12e8−9.44e7i)T2 |
| 47 | 1+(785.+4.45e3i)T+(−2.15e8+7.84e7i)T2 |
| 53 | 1+(573.+208.i)T+(3.20e8+2.68e8i)T2 |
| 59 | 1+(1.88e3−1.07e4i)T+(−6.71e8−2.44e8i)T2 |
| 61 | 1+(1.59e4+5.81e3i)T+(6.46e8+5.42e8i)T2 |
| 67 | 1+(1.30e3+7.38e3i)T+(−1.26e9+4.61e8i)T2 |
| 71 | 1+(−2.77e4+1.01e4i)T+(1.38e9−1.15e9i)T2 |
| 73 | 1+(−2.47e4−2.07e4i)T+(3.59e8+2.04e9i)T2 |
| 79 | 1+(2.36e4+1.98e4i)T+(5.34e8+3.03e9i)T2 |
| 83 | 1+(1.87e4+3.24e4i)T+(−1.96e9+3.41e9i)T2 |
| 89 | 1+(6.39e3−5.36e3i)T+(9.69e8−5.49e9i)T2 |
| 97 | 1+(7.30e3−4.14e4i)T+(−8.06e9−2.93e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.14708791397097383289005187128, −14.70113524142166235418536858991, −12.68178490041511549805409527525, −11.69427955081152224351426093407, −11.44590244848684811428634321675, −9.373321672842540095907134468666, −7.999555889357858115905935488301, −6.17584639200331232613518005680, −4.42075957654681948227761307313, −2.23723577448634154013816981948,
0.22627110144835400123007686983, 4.20829930971042469622553525549, 5.09696406972937024038050839794, 7.37235325014014421800265156863, 8.047100564611777405093799523771, 10.15989810538609631551824781702, 11.20543003286860670789131790870, 12.60970748509347213112356727689, 14.06087927583854463736932863295, 15.07780158184546330298368182796