L(s) = 1 | + (0.694 − 3.93i)2-s + (−8.20 − 6.88i)3-s + (−15.0 − 5.47i)4-s + (−55.8 + 20.3i)5-s + (−32.8 + 27.5i)6-s + (115. + 199. i)7-s + (−32 + 55.4i)8-s + (−22.2 − 126. i)9-s + (41.2 + 234. i)10-s + (28.7 − 49.7i)11-s + (85.6 + 148. i)12-s + (−825. + 692. i)13-s + (866. − 315. i)14-s + (597. + 217. i)15-s + (196. + 164. i)16-s + (−149. + 850. i)17-s + ⋯ |
L(s) = 1 | + (0.122 − 0.696i)2-s + (−0.526 − 0.441i)3-s + (−0.469 − 0.171i)4-s + (−0.998 + 0.363i)5-s + (−0.372 + 0.312i)6-s + (0.888 + 1.53i)7-s + (−0.176 + 0.306i)8-s + (−0.0916 − 0.519i)9-s + (0.130 + 0.740i)10-s + (0.0716 − 0.124i)11-s + (0.171 + 0.297i)12-s + (−1.35 + 1.13i)13-s + (1.18 − 0.429i)14-s + (0.686 + 0.249i)15-s + (0.191 + 0.160i)16-s + (−0.125 + 0.713i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0930 - 0.995i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.0930 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.266575 + 0.292659i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.266575 + 0.292659i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.694 + 3.93i)T \) |
| 19 | \( 1 + (1.44e3 + 633. i)T \) |
good | 3 | \( 1 + (8.20 + 6.88i)T + (42.1 + 239. i)T^{2} \) |
| 5 | \( 1 + (55.8 - 20.3i)T + (2.39e3 - 2.00e3i)T^{2} \) |
| 7 | \( 1 + (-115. - 199. i)T + (-8.40e3 + 1.45e4i)T^{2} \) |
| 11 | \( 1 + (-28.7 + 49.7i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 + (825. - 692. i)T + (6.44e4 - 3.65e5i)T^{2} \) |
| 17 | \( 1 + (149. - 850. i)T + (-1.33e6 - 4.85e5i)T^{2} \) |
| 23 | \( 1 + (1.49e3 + 544. i)T + (4.93e6 + 4.13e6i)T^{2} \) |
| 29 | \( 1 + (1.25e3 + 7.12e3i)T + (-1.92e7 + 7.01e6i)T^{2} \) |
| 31 | \( 1 + (601. + 1.04e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 - 1.44e4T + 6.93e7T^{2} \) |
| 41 | \( 1 + (-1.12e4 - 9.42e3i)T + (2.01e7 + 1.14e8i)T^{2} \) |
| 43 | \( 1 + (1.63e4 - 5.93e3i)T + (1.12e8 - 9.44e7i)T^{2} \) |
| 47 | \( 1 + (785. + 4.45e3i)T + (-2.15e8 + 7.84e7i)T^{2} \) |
| 53 | \( 1 + (573. + 208. i)T + (3.20e8 + 2.68e8i)T^{2} \) |
| 59 | \( 1 + (1.88e3 - 1.07e4i)T + (-6.71e8 - 2.44e8i)T^{2} \) |
| 61 | \( 1 + (1.59e4 + 5.81e3i)T + (6.46e8 + 5.42e8i)T^{2} \) |
| 67 | \( 1 + (1.30e3 + 7.38e3i)T + (-1.26e9 + 4.61e8i)T^{2} \) |
| 71 | \( 1 + (-2.77e4 + 1.01e4i)T + (1.38e9 - 1.15e9i)T^{2} \) |
| 73 | \( 1 + (-2.47e4 - 2.07e4i)T + (3.59e8 + 2.04e9i)T^{2} \) |
| 79 | \( 1 + (2.36e4 + 1.98e4i)T + (5.34e8 + 3.03e9i)T^{2} \) |
| 83 | \( 1 + (1.87e4 + 3.24e4i)T + (-1.96e9 + 3.41e9i)T^{2} \) |
| 89 | \( 1 + (6.39e3 - 5.36e3i)T + (9.69e8 - 5.49e9i)T^{2} \) |
| 97 | \( 1 + (7.30e3 - 4.14e4i)T + (-8.06e9 - 2.93e9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.14708791397097383289005187128, −14.70113524142166235418536858991, −12.68178490041511549805409527525, −11.69427955081152224351426093407, −11.44590244848684811428634321675, −9.373321672842540095907134468666, −7.999555889357858115905935488301, −6.17584639200331232613518005680, −4.42075957654681948227761307313, −2.23723577448634154013816981948,
0.22627110144835400123007686983, 4.20829930971042469622553525549, 5.09696406972937024038050839794, 7.37235325014014421800265156863, 8.047100564611777405093799523771, 10.15989810538609631551824781702, 11.20543003286860670789131790870, 12.60970748509347213112356727689, 14.06087927583854463736932863295, 15.07780158184546330298368182796