L(s) = 1 | + (−3.75 + 1.36i)2-s + (−5.14 + 29.1i)3-s + (12.2 − 10.2i)4-s + (68.5 + 57.5i)5-s + (−20.5 − 116. i)6-s + (68.7 + 119. i)7-s + (−32.0 + 55.4i)8-s + (−597. − 217. i)9-s + (−336. − 122. i)10-s + (152. − 264. i)11-s + (237. + 410. i)12-s + (15.9 + 90.4i)13-s + (−421. − 353. i)14-s + (−2.03e3 + 1.70e3i)15-s + (44.4 − 252. i)16-s + (54.3 − 19.7i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 0.241i)2-s + (−0.330 + 1.87i)3-s + (0.383 − 0.321i)4-s + (1.22 + 1.02i)5-s + (−0.233 − 1.32i)6-s + (0.529 + 0.917i)7-s + (−0.176 + 0.306i)8-s + (−2.46 − 0.895i)9-s + (−1.06 − 0.387i)10-s + (0.380 − 0.658i)11-s + (0.475 + 0.823i)12-s + (0.0261 + 0.148i)13-s + (−0.574 − 0.481i)14-s + (−2.33 + 1.95i)15-s + (0.0434 − 0.246i)16-s + (0.0455 − 0.0165i)17-s + ⋯ |
Λ(s)=(=(38s/2ΓC(s)L(s)(−0.972−0.234i)Λ(6−s)
Λ(s)=(=(38s/2ΓC(s+5/2)L(s)(−0.972−0.234i)Λ(1−s)
Degree: |
2 |
Conductor: |
38
= 2⋅19
|
Sign: |
−0.972−0.234i
|
Analytic conductor: |
6.09458 |
Root analytic conductor: |
2.46872 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ38(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 38, ( :5/2), −0.972−0.234i)
|
Particular Values
L(3) |
≈ |
0.147199+1.23708i |
L(21) |
≈ |
0.147199+1.23708i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.75−1.36i)T |
| 19 | 1+(−920.+1.27e3i)T |
good | 3 | 1+(5.14−29.1i)T+(−228.−83.1i)T2 |
| 5 | 1+(−68.5−57.5i)T+(542.+3.07e3i)T2 |
| 7 | 1+(−68.7−119.i)T+(−8.40e3+1.45e4i)T2 |
| 11 | 1+(−152.+264.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+(−15.9−90.4i)T+(−3.48e5+1.26e5i)T2 |
| 17 | 1+(−54.3+19.7i)T+(1.08e6−9.12e5i)T2 |
| 23 | 1+(−2.22e3+1.86e3i)T+(1.11e6−6.33e6i)T2 |
| 29 | 1+(5.07e3+1.84e3i)T+(1.57e7+1.31e7i)T2 |
| 31 | 1+(−2.96e3−5.14e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+287.T+6.93e7T2 |
| 41 | 1+(240.−1.36e3i)T+(−1.08e8−3.96e7i)T2 |
| 43 | 1+(−6.18e3−5.18e3i)T+(2.55e7+1.44e8i)T2 |
| 47 | 1+(1.47e3+537.i)T+(1.75e8+1.47e8i)T2 |
| 53 | 1+(2.96e4−2.49e4i)T+(7.26e7−4.11e8i)T2 |
| 59 | 1+(1.90e3−692.i)T+(5.47e8−4.59e8i)T2 |
| 61 | 1+(−1.66e4+1.40e4i)T+(1.46e8−8.31e8i)T2 |
| 67 | 1+(−5.93e4−2.15e4i)T+(1.03e9+8.67e8i)T2 |
| 71 | 1+(1.92e4+1.61e4i)T+(3.13e8+1.77e9i)T2 |
| 73 | 1+(−5.90e3+3.34e4i)T+(−1.94e9−7.09e8i)T2 |
| 79 | 1+(2.42e3−1.37e4i)T+(−2.89e9−1.05e9i)T2 |
| 83 | 1+(4.01e4+6.94e4i)T+(−1.96e9+3.41e9i)T2 |
| 89 | 1+(8.64e3+4.90e4i)T+(−5.24e9+1.90e9i)T2 |
| 97 | 1+(3.82e4−1.39e4i)T+(6.57e9−5.51e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.81951776928165121173093072282, −14.88134358110950747981735154228, −14.15240535113608796289885010775, −11.42388990574730391495470165084, −10.72701470910156754746403800522, −9.596954804556284649919876075745, −8.856765525352505689984520364295, −6.27233104352871197448671235209, −5.21067240844862921629912583258, −2.85833287872900030965558457112,
1.00519814906895539603939734219, 1.81802609134381555725091027169, 5.55552068160393133407887762196, 7.03148017442381195262131042765, 8.108325996693400991333855053770, 9.563138613879757643461870521377, 11.24970574783496713926547119602, 12.49163404167757324159871306148, 13.25660067884646484089116220287, 14.20095149949863315780407272801