L(s) = 1 | + (−3.75 + 1.36i)2-s + (4.41 − 25.0i)3-s + (12.2 − 10.2i)4-s + (−71.5 − 60.0i)5-s + (17.6 + 100. i)6-s + (91.0 + 157. i)7-s + (−32.0 + 55.4i)8-s + (−377. − 137. i)9-s + (351. + 127. i)10-s + (−198. + 344. i)11-s + (−203. − 351. i)12-s + (−119. − 680. i)13-s + (−558. − 468. i)14-s + (−1.81e3 + 1.52e3i)15-s + (44.4 − 252. i)16-s + (−1.15e3 + 421. i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 0.241i)2-s + (0.282 − 1.60i)3-s + (0.383 − 0.321i)4-s + (−1.28 − 1.07i)5-s + (0.200 + 1.13i)6-s + (0.702 + 1.21i)7-s + (−0.176 + 0.306i)8-s + (−1.55 − 0.565i)9-s + (1.11 + 0.404i)10-s + (−0.495 + 0.858i)11-s + (−0.407 − 0.705i)12-s + (−0.196 − 1.11i)13-s + (−0.761 − 0.638i)14-s + (−2.08 + 1.75i)15-s + (0.0434 − 0.246i)16-s + (−0.972 + 0.353i)17-s + ⋯ |
Λ(s)=(=(38s/2ΓC(s)L(s)(−0.990−0.134i)Λ(6−s)
Λ(s)=(=(38s/2ΓC(s+5/2)L(s)(−0.990−0.134i)Λ(1−s)
Degree: |
2 |
Conductor: |
38
= 2⋅19
|
Sign: |
−0.990−0.134i
|
Analytic conductor: |
6.09458 |
Root analytic conductor: |
2.46872 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ38(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 38, ( :5/2), −0.990−0.134i)
|
Particular Values
L(3) |
≈ |
0.0369392+0.547817i |
L(21) |
≈ |
0.0369392+0.547817i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(3.75−1.36i)T |
| 19 | 1+(−785.+1.36e3i)T |
good | 3 | 1+(−4.41+25.0i)T+(−228.−83.1i)T2 |
| 5 | 1+(71.5+60.0i)T+(542.+3.07e3i)T2 |
| 7 | 1+(−91.0−157.i)T+(−8.40e3+1.45e4i)T2 |
| 11 | 1+(198.−344.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1+(119.+680.i)T+(−3.48e5+1.26e5i)T2 |
| 17 | 1+(1.15e3−421.i)T+(1.08e6−9.12e5i)T2 |
| 23 | 1+(−216.+181.i)T+(1.11e6−6.33e6i)T2 |
| 29 | 1+(4.07e3+1.48e3i)T+(1.57e7+1.31e7i)T2 |
| 31 | 1+(1.34e3+2.32e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+3.85e3T+6.93e7T2 |
| 41 | 1+(−3.39e3+1.92e4i)T+(−1.08e8−3.96e7i)T2 |
| 43 | 1+(284.+238.i)T+(2.55e7+1.44e8i)T2 |
| 47 | 1+(1.27e4+4.62e3i)T+(1.75e8+1.47e8i)T2 |
| 53 | 1+(−4.30e3+3.61e3i)T+(7.26e7−4.11e8i)T2 |
| 59 | 1+(−2.82e4+1.02e4i)T+(5.47e8−4.59e8i)T2 |
| 61 | 1+(−1.69e3+1.42e3i)T+(1.46e8−8.31e8i)T2 |
| 67 | 1+(249.+90.9i)T+(1.03e9+8.67e8i)T2 |
| 71 | 1+(−1.70e4−1.43e4i)T+(3.13e8+1.77e9i)T2 |
| 73 | 1+(−9.67e3+5.48e4i)T+(−1.94e9−7.09e8i)T2 |
| 79 | 1+(9.82e3−5.56e4i)T+(−2.89e9−1.05e9i)T2 |
| 83 | 1+(4.25e4+7.37e4i)T+(−1.96e9+3.41e9i)T2 |
| 89 | 1+(−3.76e3−2.13e4i)T+(−5.24e9+1.90e9i)T2 |
| 97 | 1+(1.04e5−3.81e4i)T+(6.57e9−5.51e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.04700416368871650008378681809, −13.05375394406036130039669388319, −12.32355872036585432440478394819, −11.40306466011049597847768896106, −8.888512033334952208172976263938, −8.116183385245456185955599826303, −7.29301102253709635053351313188, −5.28770559154756537252041486266, −2.11731036099219031010878801531, −0.36574411998479145561017828968,
3.34441290498922989242804398315, 4.35963027130056289785619609867, 7.21729484063745164372987231783, 8.412801509284820722389892013391, 9.937256831823726118764289827146, 11.10762207484461834910326450345, 11.25985204965013986325514132398, 14.04895915743965120285991728817, 14.91379321931548100488633390127, 16.05413822901568666482661009044