Properties

Label 2-380-19.16-c1-0-5
Degree $2$
Conductor $380$
Sign $-0.956 + 0.290i$
Analytic cond. $3.03431$
Root an. cond. $1.74192$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.693 + 0.252i)3-s + (−0.173 + 0.984i)5-s + (−2.32 − 4.03i)7-s + (−1.88 + 1.57i)9-s + (−1.20 + 2.09i)11-s + (−2.11 − 0.768i)13-s + (−0.128 − 0.726i)15-s + (−0.901 − 0.756i)17-s + (−3.98 − 1.77i)19-s + (2.63 + 2.20i)21-s + (−0.255 − 1.44i)23-s + (−0.939 − 0.342i)25-s + (2.01 − 3.48i)27-s + (−3.72 + 3.12i)29-s + (−3.60 − 6.24i)31-s + ⋯
L(s)  = 1  + (−0.400 + 0.145i)3-s + (−0.0776 + 0.440i)5-s + (−0.880 − 1.52i)7-s + (−0.626 + 0.526i)9-s + (−0.364 + 0.630i)11-s + (−0.585 − 0.213i)13-s + (−0.0330 − 0.187i)15-s + (−0.218 − 0.183i)17-s + (−0.913 − 0.406i)19-s + (0.574 + 0.482i)21-s + (−0.0532 − 0.301i)23-s + (−0.187 − 0.0684i)25-s + (0.387 − 0.671i)27-s + (−0.691 + 0.580i)29-s + (−0.647 − 1.12i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.956 + 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(380\)    =    \(2^{2} \cdot 5 \cdot 19\)
Sign: $-0.956 + 0.290i$
Analytic conductor: \(3.03431\)
Root analytic conductor: \(1.74192\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{380} (301, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 380,\ (\ :1/2),\ -0.956 + 0.290i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0177552 - 0.119664i\)
\(L(\frac12)\) \(\approx\) \(0.0177552 - 0.119664i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.173 - 0.984i)T \)
19 \( 1 + (3.98 + 1.77i)T \)
good3 \( 1 + (0.693 - 0.252i)T + (2.29 - 1.92i)T^{2} \)
7 \( 1 + (2.32 + 4.03i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (1.20 - 2.09i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (2.11 + 0.768i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (0.901 + 0.756i)T + (2.95 + 16.7i)T^{2} \)
23 \( 1 + (0.255 + 1.44i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (3.72 - 3.12i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (3.60 + 6.24i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 2.81T + 37T^{2} \)
41 \( 1 + (5.05 - 1.84i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (1.33 - 7.59i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (-4.70 + 3.94i)T + (8.16 - 46.2i)T^{2} \)
53 \( 1 + (-0.390 - 2.21i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (-8.78 - 7.36i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (0.285 + 1.62i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (-1.80 + 1.51i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-1.11 + 6.29i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (-3.18 + 1.15i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-2.11 + 0.770i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (5.11 + 8.85i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-5.26 - 1.91i)T + (68.1 + 57.2i)T^{2} \)
97 \( 1 + (-4.19 - 3.52i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.71604992291978735786704847730, −10.31362819800979881614185158886, −9.340498911412799031802533290974, −7.88758641854511586274670860888, −7.13902071408443079066153677310, −6.26906859345727498107098487874, −4.93974866310573931738343063428, −3.90257261300548448075609762739, −2.54160815415552779591803528076, −0.07761952621198305518721249874, 2.33485656548037077746275115247, 3.58612588941893841621277003151, 5.30128442164485013303558407429, 5.88189852552313329998608773840, 6.81656482733590780671920418022, 8.371454291877661228307533513195, 8.926284968727498448994716020691, 9.795833117645334082849209755845, 11.03848935723972375456116410603, 11.94802192613208101474229473289

Graph of the $Z$-function along the critical line