L(s) = 1 | + (−0.693 + 0.252i)3-s + (−0.173 + 0.984i)5-s + (−2.32 − 4.03i)7-s + (−1.88 + 1.57i)9-s + (−1.20 + 2.09i)11-s + (−2.11 − 0.768i)13-s + (−0.128 − 0.726i)15-s + (−0.901 − 0.756i)17-s + (−3.98 − 1.77i)19-s + (2.63 + 2.20i)21-s + (−0.255 − 1.44i)23-s + (−0.939 − 0.342i)25-s + (2.01 − 3.48i)27-s + (−3.72 + 3.12i)29-s + (−3.60 − 6.24i)31-s + ⋯ |
L(s) = 1 | + (−0.400 + 0.145i)3-s + (−0.0776 + 0.440i)5-s + (−0.880 − 1.52i)7-s + (−0.626 + 0.526i)9-s + (−0.364 + 0.630i)11-s + (−0.585 − 0.213i)13-s + (−0.0330 − 0.187i)15-s + (−0.218 − 0.183i)17-s + (−0.913 − 0.406i)19-s + (0.574 + 0.482i)21-s + (−0.0532 − 0.301i)23-s + (−0.187 − 0.0684i)25-s + (0.387 − 0.671i)27-s + (−0.691 + 0.580i)29-s + (−0.647 − 1.12i)31-s + ⋯ |
Λ(s)=(=(380s/2ΓC(s)L(s)(−0.956+0.290i)Λ(2−s)
Λ(s)=(=(380s/2ΓC(s+1/2)L(s)(−0.956+0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
380
= 22⋅5⋅19
|
Sign: |
−0.956+0.290i
|
Analytic conductor: |
3.03431 |
Root analytic conductor: |
1.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ380(301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 380, ( :1/2), −0.956+0.290i)
|
Particular Values
L(1) |
≈ |
0.0177552−0.119664i |
L(21) |
≈ |
0.0177552−0.119664i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.173−0.984i)T |
| 19 | 1+(3.98+1.77i)T |
good | 3 | 1+(0.693−0.252i)T+(2.29−1.92i)T2 |
| 7 | 1+(2.32+4.03i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.20−2.09i)T+(−5.5−9.52i)T2 |
| 13 | 1+(2.11+0.768i)T+(9.95+8.35i)T2 |
| 17 | 1+(0.901+0.756i)T+(2.95+16.7i)T2 |
| 23 | 1+(0.255+1.44i)T+(−21.6+7.86i)T2 |
| 29 | 1+(3.72−3.12i)T+(5.03−28.5i)T2 |
| 31 | 1+(3.60+6.24i)T+(−15.5+26.8i)T2 |
| 37 | 1−2.81T+37T2 |
| 41 | 1+(5.05−1.84i)T+(31.4−26.3i)T2 |
| 43 | 1+(1.33−7.59i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−4.70+3.94i)T+(8.16−46.2i)T2 |
| 53 | 1+(−0.390−2.21i)T+(−49.8+18.1i)T2 |
| 59 | 1+(−8.78−7.36i)T+(10.2+58.1i)T2 |
| 61 | 1+(0.285+1.62i)T+(−57.3+20.8i)T2 |
| 67 | 1+(−1.80+1.51i)T+(11.6−65.9i)T2 |
| 71 | 1+(−1.11+6.29i)T+(−66.7−24.2i)T2 |
| 73 | 1+(−3.18+1.15i)T+(55.9−46.9i)T2 |
| 79 | 1+(−2.11+0.770i)T+(60.5−50.7i)T2 |
| 83 | 1+(5.11+8.85i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−5.26−1.91i)T+(68.1+57.2i)T2 |
| 97 | 1+(−4.19−3.52i)T+(16.8+95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71604992291978735786704847730, −10.31362819800979881614185158886, −9.340498911412799031802533290974, −7.88758641854511586274670860888, −7.13902071408443079066153677310, −6.26906859345727498107098487874, −4.93974866310573931738343063428, −3.90257261300548448075609762739, −2.54160815415552779591803528076, −0.07761952621198305518721249874,
2.33485656548037077746275115247, 3.58612588941893841621277003151, 5.30128442164485013303558407429, 5.88189852552313329998608773840, 6.81656482733590780671920418022, 8.371454291877661228307533513195, 8.926284968727498448994716020691, 9.795833117645334082849209755845, 11.03848935723972375456116410603, 11.94802192613208101474229473289