L(s) = 1 | + (0.543 + 3.08i)3-s + (−0.766 + 0.642i)5-s + (0.0481 − 0.0833i)7-s + (−6.37 + 2.32i)9-s + (0.190 + 0.329i)11-s + (−0.668 + 3.79i)13-s + (−2.39 − 2.01i)15-s + (2.49 + 0.909i)17-s + (−0.788 − 4.28i)19-s + (0.283 + 0.103i)21-s + (0.131 + 0.110i)23-s + (0.173 − 0.984i)25-s + (−5.92 − 10.2i)27-s + (−3.67 + 1.33i)29-s + (−1.23 + 2.13i)31-s + ⋯ |
L(s) = 1 | + (0.313 + 1.77i)3-s + (−0.342 + 0.287i)5-s + (0.0181 − 0.0315i)7-s + (−2.12 + 0.773i)9-s + (0.0573 + 0.0994i)11-s + (−0.185 + 1.05i)13-s + (−0.618 − 0.519i)15-s + (0.605 + 0.220i)17-s + (−0.180 − 0.983i)19-s + (0.0617 + 0.0224i)21-s + (0.0273 + 0.0229i)23-s + (0.0347 − 0.196i)25-s + (−1.14 − 1.97i)27-s + (−0.682 + 0.248i)29-s + (−0.221 + 0.383i)31-s + ⋯ |
Λ(s)=(=(380s/2ΓC(s)L(s)(−0.849−0.527i)Λ(2−s)
Λ(s)=(=(380s/2ΓC(s+1/2)L(s)(−0.849−0.527i)Λ(1−s)
Degree: |
2 |
Conductor: |
380
= 22⋅5⋅19
|
Sign: |
−0.849−0.527i
|
Analytic conductor: |
3.03431 |
Root analytic conductor: |
1.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ380(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 380, ( :1/2), −0.849−0.527i)
|
Particular Values
L(1) |
≈ |
0.336855+1.18222i |
L(21) |
≈ |
0.336855+1.18222i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.766−0.642i)T |
| 19 | 1+(0.788+4.28i)T |
good | 3 | 1+(−0.543−3.08i)T+(−2.81+1.02i)T2 |
| 7 | 1+(−0.0481+0.0833i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.190−0.329i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.668−3.79i)T+(−12.2−4.44i)T2 |
| 17 | 1+(−2.49−0.909i)T+(13.0+10.9i)T2 |
| 23 | 1+(−0.131−0.110i)T+(3.99+22.6i)T2 |
| 29 | 1+(3.67−1.33i)T+(22.2−18.6i)T2 |
| 31 | 1+(1.23−2.13i)T+(−15.5−26.8i)T2 |
| 37 | 1−6.92T+37T2 |
| 41 | 1+(−0.688−3.90i)T+(−38.5+14.0i)T2 |
| 43 | 1+(−9.81+8.23i)T+(7.46−42.3i)T2 |
| 47 | 1+(10.5−3.84i)T+(36.0−30.2i)T2 |
| 53 | 1+(−9.54−8.00i)T+(9.20+52.1i)T2 |
| 59 | 1+(−5.79−2.10i)T+(45.1+37.9i)T2 |
| 61 | 1+(3.93+3.29i)T+(10.5+60.0i)T2 |
| 67 | 1+(−11.4+4.16i)T+(51.3−43.0i)T2 |
| 71 | 1+(−1.30+1.09i)T+(12.3−69.9i)T2 |
| 73 | 1+(−0.258−1.46i)T+(−68.5+24.9i)T2 |
| 79 | 1+(−2.60−14.7i)T+(−74.2+27.0i)T2 |
| 83 | 1+(5.46−9.46i)T+(−41.5−71.8i)T2 |
| 89 | 1+(0.400−2.27i)T+(−83.6−30.4i)T2 |
| 97 | 1+(−1.37−0.500i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.26040888284745147038267090852, −10.89208962977883610917943113645, −9.761342718364732059926155837284, −9.251356994718058513256970562404, −8.310672643408859551500710352140, −7.07942691082371814052565666666, −5.67987904475250700972176126559, −4.56866012931917474245087520321, −3.86920687271814072908267068209, −2.67843427951203647009597744529,
0.811045728740192393632785599695, 2.26912502090536573161364769167, 3.56093221549864961408204670418, 5.43509843503513700113854328340, 6.28225384825922054079542016160, 7.50686420506403422311708102424, 7.891978735408903071778627132677, 8.780489971601836749591880506044, 10.02417760585727650981445102649, 11.37097410144899956234132381674