L(s) = 1 | + (0.543 + 3.08i)3-s + (−0.766 + 0.642i)5-s + (0.0481 − 0.0833i)7-s + (−6.37 + 2.32i)9-s + (0.190 + 0.329i)11-s + (−0.668 + 3.79i)13-s + (−2.39 − 2.01i)15-s + (2.49 + 0.909i)17-s + (−0.788 − 4.28i)19-s + (0.283 + 0.103i)21-s + (0.131 + 0.110i)23-s + (0.173 − 0.984i)25-s + (−5.92 − 10.2i)27-s + (−3.67 + 1.33i)29-s + (−1.23 + 2.13i)31-s + ⋯ |
L(s) = 1 | + (0.313 + 1.77i)3-s + (−0.342 + 0.287i)5-s + (0.0181 − 0.0315i)7-s + (−2.12 + 0.773i)9-s + (0.0573 + 0.0994i)11-s + (−0.185 + 1.05i)13-s + (−0.618 − 0.519i)15-s + (0.605 + 0.220i)17-s + (−0.180 − 0.983i)19-s + (0.0617 + 0.0224i)21-s + (0.0273 + 0.0229i)23-s + (0.0347 − 0.196i)25-s + (−1.14 − 1.97i)27-s + (−0.682 + 0.248i)29-s + (−0.221 + 0.383i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.849 - 0.527i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 380 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.849 - 0.527i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.336855 + 1.18222i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.336855 + 1.18222i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.766 - 0.642i)T \) |
| 19 | \( 1 + (0.788 + 4.28i)T \) |
good | 3 | \( 1 + (-0.543 - 3.08i)T + (-2.81 + 1.02i)T^{2} \) |
| 7 | \( 1 + (-0.0481 + 0.0833i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.190 - 0.329i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.668 - 3.79i)T + (-12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (-2.49 - 0.909i)T + (13.0 + 10.9i)T^{2} \) |
| 23 | \( 1 + (-0.131 - 0.110i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (3.67 - 1.33i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (1.23 - 2.13i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.92T + 37T^{2} \) |
| 41 | \( 1 + (-0.688 - 3.90i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-9.81 + 8.23i)T + (7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (10.5 - 3.84i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 + (-9.54 - 8.00i)T + (9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (-5.79 - 2.10i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (3.93 + 3.29i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-11.4 + 4.16i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-1.30 + 1.09i)T + (12.3 - 69.9i)T^{2} \) |
| 73 | \( 1 + (-0.258 - 1.46i)T + (-68.5 + 24.9i)T^{2} \) |
| 79 | \( 1 + (-2.60 - 14.7i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (5.46 - 9.46i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.400 - 2.27i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (-1.37 - 0.500i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26040888284745147038267090852, −10.89208962977883610917943113645, −9.761342718364732059926155837284, −9.251356994718058513256970562404, −8.310672643408859551500710352140, −7.07942691082371814052565666666, −5.67987904475250700972176126559, −4.56866012931917474245087520321, −3.86920687271814072908267068209, −2.67843427951203647009597744529,
0.811045728740192393632785599695, 2.26912502090536573161364769167, 3.56093221549864961408204670418, 5.43509843503513700113854328340, 6.28225384825922054079542016160, 7.50686420506403422311708102424, 7.891978735408903071778627132677, 8.780489971601836749591880506044, 10.02417760585727650981445102649, 11.37097410144899956234132381674