L(s) = 1 | + (−0.275 − 1.56i)3-s + (0.766 − 0.642i)5-s + (0.778 − 1.34i)7-s + (0.454 − 0.165i)9-s + (−1.44 − 2.50i)11-s + (−0.501 + 2.84i)13-s + (−1.21 − 1.01i)15-s + (−3.43 − 1.25i)17-s + (3.58 − 2.48i)19-s + (−2.32 − 0.845i)21-s + (−1.02 − 0.860i)23-s + (0.173 − 0.984i)25-s + (−2.76 − 4.78i)27-s + (4.25 − 1.54i)29-s + (−0.0994 + 0.172i)31-s + ⋯ |
L(s) = 1 | + (−0.159 − 0.902i)3-s + (0.342 − 0.287i)5-s + (0.294 − 0.509i)7-s + (0.151 − 0.0550i)9-s + (−0.435 − 0.754i)11-s + (−0.139 + 0.788i)13-s + (−0.313 − 0.263i)15-s + (−0.834 − 0.303i)17-s + (0.821 − 0.570i)19-s + (−0.506 − 0.184i)21-s + (−0.213 − 0.179i)23-s + (0.0347 − 0.196i)25-s + (−0.531 − 0.920i)27-s + (0.789 − 0.287i)29-s + (−0.0178 + 0.0309i)31-s + ⋯ |
Λ(s)=(=(380s/2ΓC(s)L(s)(−0.129+0.991i)Λ(2−s)
Λ(s)=(=(380s/2ΓC(s+1/2)L(s)(−0.129+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
380
= 22⋅5⋅19
|
Sign: |
−0.129+0.991i
|
Analytic conductor: |
3.03431 |
Root analytic conductor: |
1.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ380(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 380, ( :1/2), −0.129+0.991i)
|
Particular Values
L(1) |
≈ |
0.881518−1.00453i |
L(21) |
≈ |
0.881518−1.00453i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.766+0.642i)T |
| 19 | 1+(−3.58+2.48i)T |
good | 3 | 1+(0.275+1.56i)T+(−2.81+1.02i)T2 |
| 7 | 1+(−0.778+1.34i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1.44+2.50i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.501−2.84i)T+(−12.2−4.44i)T2 |
| 17 | 1+(3.43+1.25i)T+(13.0+10.9i)T2 |
| 23 | 1+(1.02+0.860i)T+(3.99+22.6i)T2 |
| 29 | 1+(−4.25+1.54i)T+(22.2−18.6i)T2 |
| 31 | 1+(0.0994−0.172i)T+(−15.5−26.8i)T2 |
| 37 | 1+6.14T+37T2 |
| 41 | 1+(−0.240−1.36i)T+(−38.5+14.0i)T2 |
| 43 | 1+(−1.02+0.861i)T+(7.46−42.3i)T2 |
| 47 | 1+(1.00−0.366i)T+(36.0−30.2i)T2 |
| 53 | 1+(−5.96−5.00i)T+(9.20+52.1i)T2 |
| 59 | 1+(−4.57−1.66i)T+(45.1+37.9i)T2 |
| 61 | 1+(−7.26−6.09i)T+(10.5+60.0i)T2 |
| 67 | 1+(−7.36+2.68i)T+(51.3−43.0i)T2 |
| 71 | 1+(−1.21+1.02i)T+(12.3−69.9i)T2 |
| 73 | 1+(−2.01−11.4i)T+(−68.5+24.9i)T2 |
| 79 | 1+(−2.38−13.5i)T+(−74.2+27.0i)T2 |
| 83 | 1+(−5.84+10.1i)T+(−41.5−71.8i)T2 |
| 89 | 1+(2.54−14.4i)T+(−83.6−30.4i)T2 |
| 97 | 1+(0.990+0.360i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27223878268465338033190225327, −10.24500181812451582149622605705, −9.200319219498462402936378653157, −8.237158493992482828423537922633, −7.20034983584266748588889962068, −6.53517948109928316944572769069, −5.31889912830912896785960148951, −4.15389739339759859109569725829, −2.41650122820220261354097770447, −0.973920049023747323381824895310,
2.10338935061628216512316786486, 3.56683132656891231639246382393, 4.85922325379728790549941884514, 5.51894443152191514538584294636, 6.86367009834831307519157020446, 7.937063924529617612693000975656, 9.021935525783366853009398075949, 10.05510355106884000045819882252, 10.39493294690944895461755582469, 11.45586570745066665466083604605