L(s) = 1 | + (−0.354 − 0.614i)3-s + (−0.5 − 0.866i)5-s + 3.11·7-s + (1.24 − 2.16i)9-s − 3.52·11-s + (−0.200 + 0.347i)13-s + (−0.354 + 0.614i)15-s + (−1.74 − 3.02i)17-s + (4.35 − 0.251i)19-s + (−1.10 − 1.91i)21-s + (3.65 − 6.33i)23-s + (−0.499 + 0.866i)25-s − 3.89·27-s + (3.96 − 6.86i)29-s + 5.73·31-s + ⋯ |
L(s) = 1 | + (−0.204 − 0.354i)3-s + (−0.223 − 0.387i)5-s + 1.17·7-s + (0.416 − 0.720i)9-s − 1.06·11-s + (−0.0556 + 0.0964i)13-s + (−0.0915 + 0.158i)15-s + (−0.424 − 0.734i)17-s + (0.998 − 0.0577i)19-s + (−0.240 − 0.416i)21-s + (0.762 − 1.32i)23-s + (−0.0999 + 0.173i)25-s − 0.750·27-s + (0.736 − 1.27i)29-s + 1.03·31-s + ⋯ |
Λ(s)=(=(380s/2ΓC(s)L(s)(0.360+0.932i)Λ(2−s)
Λ(s)=(=(380s/2ΓC(s+1/2)L(s)(0.360+0.932i)Λ(1−s)
Degree: |
2 |
Conductor: |
380
= 22⋅5⋅19
|
Sign: |
0.360+0.932i
|
Analytic conductor: |
3.03431 |
Root analytic conductor: |
1.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ380(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 380, ( :1/2), 0.360+0.932i)
|
Particular Values
L(1) |
≈ |
1.07532−0.737442i |
L(21) |
≈ |
1.07532−0.737442i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.5+0.866i)T |
| 19 | 1+(−4.35+0.251i)T |
good | 3 | 1+(0.354+0.614i)T+(−1.5+2.59i)T2 |
| 7 | 1−3.11T+7T2 |
| 11 | 1+3.52T+11T2 |
| 13 | 1+(0.200−0.347i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1.74+3.02i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−3.65+6.33i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.96+6.86i)T+(−14.5−25.1i)T2 |
| 31 | 1−5.73T+31T2 |
| 37 | 1+10.5T+37T2 |
| 41 | 1+(−0.555−0.961i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4.30−7.45i)T+(−21.5+37.2i)T2 |
| 47 | 1+(3.76−6.51i)T+(−23.5−40.7i)T2 |
| 53 | 1+(5.27−9.14i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−4.25−7.37i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−4.61+7.98i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.20−7.28i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.31−7.46i)T+(−35.5+61.4i)T2 |
| 73 | 1+(0.870+1.50i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−4.50−7.80i)T+(−39.5+68.4i)T2 |
| 83 | 1−4.07T+83T2 |
| 89 | 1+(−6.61+11.4i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3.85−6.67i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.36130138634138808513985031500, −10.35339171649876155706031931121, −9.291921410225189693146220660729, −8.250419959199405651928533687454, −7.53800808556912802475421025199, −6.47727010442478896766648228469, −5.13996140523067507593566820827, −4.44402740886320771401966039019, −2.68729767403263981844063335742, −0.990413314656452807125653544747,
1.84213141740888498894496777583, 3.41937975074693589557824707093, 4.89827486425458345349048421789, 5.32531640845324913121052485521, 7.01216042936862670405579627020, 7.80636194875614772006068489193, 8.594068927210827818089321642360, 10.00015561887179724818012301001, 10.69957960919140263787281294738, 11.28028638652935778823611564418